- 利用LangChain的StackExchange组件实现智能问答系统
nseejrukjhad
langchainmicrosoft数据库python
利用LangChain的StackExchange组件实现智能问答系统引言在当今的软件开发世界中,StackOverflow已经成为程序员解决问题的首选平台之一。而LangChain作为一个强大的AI应用开发框架,提供了StackExchange组件,使我们能够轻松地将StackOverflow的海量知识库集成到我们的应用中。本文将详细介绍如何使用LangChain的StackExchange组件
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
walkskyer
ollama入门教程langchainjavascript开发语言ollamaAI
ollama入门系列教程简介与目录相关文章:Ollama教程——入门:开启本地大型语言模型开发之旅Ollama教程——模型:如何将模型高效导入到Ollama框架Ollama教程——兼容OpenAIAPI:高效利用兼容OpenAI的API进行AI项目开发Ollama教程——使用LangChain:Ollama与LangChain的强强联合Ollama教程——生成内容API:利用Ollama的原生AP
- 好用的文本内容抽取关键词API接口调用示例
天聚数行
天行数据天行数据API接口tianapipython
用户输入的内容通常是一个不那么简洁的长尾词,通过抽取关键词接口就能快速抽取其中的核心词。该接口支持指定抽取数量和词性,其中num参数为可选,默认返回10个词语,999为不限数量。当指定wordtag参数为1时,返回一个包含词性的列表,例如把一大段文本中的人名或者把一篇文章里提到的地名单独提取出来。词性代码释义请参考中文智能分词接口词性代码释义。接口信息抽取一段文本信息中的核心关键词接口地址:htt
- AI时代来临,AI基础数据服务行业未来发展有哪些变化
标贝科技
人工智能数据库语言模型数据挖掘数据分析
AI基础数据服务是针对人工智能(AI)领域提供的一项服务,它包括数据采集、数据清洗、信息抽取和数据标注等服务。AI基础数据服务旨在为AI算法的训练和优化提供必要的数据支持,为AI算法的性能提供保障。标贝科技提供专业的数据采集、数据标注、训练数据集等AI基础数据服务内容,在基础数据行业拥有丰富的落地实践经验,据标贝科技的市场调研统计,2020中国AI行业核心产业市场规模将超过1500亿元,市场发展向
- NLP-预训练模型-中文:封神榜系列【姜子牙(通用大模型)、太乙(多模态)、二郎神(语言理解)、闻仲(语言生成)、燃灯(语言转换)、余元(领域)、...】
u013250861
LLM自然语言处理人工智能深度学习
封神榜模型系列简介系列名称需求适用任务参数规模备注姜子牙通用通用大模型>70亿参数通用大模型“姜子牙”系列,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力太乙特定多模态8千万-10亿参数应用于跨模态场景,包括文本图像生成,蛋白质结构预测,语音-文本表示等
- 心理健康问答系统-AIGC大模型-小程序制作
阿利同学
小程序制作AIGC小程序问答系统心理健康人工智能小程序制作大模型
制作一个心理健康问答系统的小程序,涉及到多个环节和技术领域。这里将从需求分析、技术选型、开发流程、API调用等方面进行详细说明。一、需求分析与规划在开始任何项目之前,首先需要明确的是你的小程序想要解决什么样的问题,提供哪些功能给用户。对于心理健康问答系统来说,可能的功能包括但不限于:心理健康知识科普用户情绪识别及反馈提供专业心理咨询服务情绪日记记录心理健康测试问卷在线预约心理医生开发技术Sprin
- NLP学习——信息抽取
P-ShineBeam
NLP基础学习
信息抽取自动从半结构或无结构的文本中抽取出结构化信息的任务。常见的信息抽取任务有三类:实体抽取、关系抽取、事件抽取。1、实体抽取从一段文本中抽取出文本内容并识别为预定义的类别。实体抽取任务中的复杂问题:重复嵌套,原文中多个实体之间共享片段不连续,一个实体由多个不连续片段组成2、关系抽取从文本中抽取一对实体和预定义的关系类型。传统的关系抽取任务实现方案是先进行实体抽取,再输入头尾实体与原文进行关系分
- Cerebras DocChat发布:基于Llama 3构建,DocChat在几小时内完成GPT-4级别的对话问答训练
科技大本营
llama人工智能算法深度学习机器学习
Cerebras发布的DocChat标志着基于文档的对话式问答系统的一个重大里程碑。Cerebras以其在机器学习(ML)和大型语言模型(LLMs)方面的深厚专业知识而闻名,推出了DocChat系列的两个新模型:CerebrasLlama3-DocChat和CerebrasDragon-DocChat。这些模型旨在提供高性能的对话式人工智能,特别是针对基于文档的问答任务,并利用Cerebras的尖
- 保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统
2401_85763803
langchain安全人工智能
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统在人工智能(AI)飞速发展的今天,AI问答系统已经成为企业与客户互动的重要工具。然而,随之而来的个人数据隐私问题也日益凸显。如何在不泄露用户隐私的前提下,利用AI的强大能力提供智能服务?本文将详细介绍如何使用LangChain和Presidio库构建一个既安全又高效的AI问答系统。一、隐私保护的重要性个人可识别信息(
- 人工智能领域--RAG技术
胡萝卜不甜
机器学习人工智能python学习算法
今天带大家来学习一下RAG技术,尤其在在大模型中应用广泛。一.RAG(RetrievalAugmentedGeneration)检索增强生成RAG,即Retrieval-AugmentedGeneration(检索增强的生成),是一种结合了检索(Retrieval)和生成(Generation)机制的人工智能技术,常用于提升自然语言处理(NLP)任务的性能,尤其是在问答系统、文本摘要、对话系统等领
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- #LLM入门|Prompt#3.1 第三部分 使用 LangChain 开发应用程序_简介
向日葵花籽儿
LLM入门教程笔记AIGCpromptpythonLLMlangchain人工智能chatgpt
概述如何能够基于ChatGPT搭建一个完整、全面的问答系统,要搭建基于ChatGPT的完整问答系统,除去上一部分所讲述的如何构建PromptEngineering外,还需要完成多个额外的步骤。例如,处理用户输入提升系统处理能力,使用思维链、提示链来提升问答效果,检查输入保证系统反馈稳定,对系统效果进行评估以实现进一步优化等。当ChatGPTAPI提供了足够的智能性,系统的重要性就更充分地展现在保证
- 信息抽取技术:电商领域的智能化革命与市场策略优化
思通数科x
运维大数据
一、引言在当今快速发展的互联网电商领域,信息抽取技术的应用已经成为商家优化供应链、降低成本、提高响应速度的关键手段。随着消费者需求的日益多样化和个性化,电子商务平台需要更高效、智能的数据处理能力来应对市场的挑战。从供应商管理到库存优化,再到物流协调,信息抽取技术正逐步渗透到电商运营的每一个环节。本文将探讨信息抽取技术如何帮助电商企业在激烈的市场竞争中保持领先地位,实现供应链的透明化、自动化和智能化
- 计算机毕设分享 面向高考招生咨询的问答系统设计与实现(源码+论文)
源码爱鸭
高考毕设毕业设计开源
文章目录0项目说明1项目说明2系统设计3系统功能3.1问答3.2问题模板4实验结果5论文目录6项目工程0项目说明面向高考招生咨询的问答系统设计与实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1项目说明本系统主要从数据获取,问题分类,问题处理和答案生成以及软件设计四个方面论述自动问答系统的设计与实现。数据获取涉及到网络数据抓取技术,数据库存储与操作,本文使用了python网络爬虫和MyS
- AI问答系统的一般问题
UPUPUPEveryday
人工智能机器学习深度学习
AI对话结果的可信程度AI对话结果的可信程度取决于多个因素。首先,可信度受到AI系统的训练和能力的影响。一个经过充分训练、经过验证的AI系统可能会产生更准确和可靠的对话结果。其次,可信度还取决于对话内容的复杂程度。AI系统在处理简单和直接的问题上可能比处理复杂和抽象的问题更具可信度。此外,可信度还受到语言模型和数据集的质量的影响。如果语言模型具有广泛且准确的数据集作为基础,那么结果的可信度可能会更
- 合槽位填充技术的问答系统构建步骤及其所需的技术和工具
Komorebi_9999
知识图谱问答系统自然语言处理
下面是结合槽位填充技术的问答系统构建步骤及其所需的技术和工具:1.知识图谱构建技术/工具:Neo4j或ArangoDB(图数据库)RDF2Neo(将RDF数据导入Neo4j的工具)D2RQ(将关系型数据库转化为SPARQL端点)模型算法:资源描述框架(RDF)Web本体语言(OWL)2.自然语言处理(NLP)技术/工具:spaCy(用于文本处理、词性标注、命名实体识别等)NLTK或HuggingF
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 【8】知识加工
铁盒薄荷糖
知识图谱实战6+3天人工智能
一、概述对信息抽取/知识融合后得到的“事实”进行知识推理以拓展现有知识、得到新知识。知识加工主要包括三方面内容:本体构建、知识推理和质量评估。二、本体构建1.本体定义:本体是用于描述一个领域的术语集合,其组织结构是层次结构化的。简而言之,本体是用于描述一个领域的数据集合,是知识库的骨架。作用:获取、描述和表示相关领域的知识,提供对该领域知识的共同理解,确定领域内共同认可的词汇,提供该领域特定的概念
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
人工智能自然语言处理数据挖掘
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- 基于neo4j的汽车领域知识图谱问答系统
程序员~小强
neo4j汽车知识图谱
介绍:请使用前务必读一下README.md,系统主要是汽车领域相关知识图谱问答系统,包括了汽车的价格、品牌等十几个关系实体,十几个关系,数据量实体7000+,关系9000+整个系统使用django构建,自带了一份数据,比较完整,有初始化数据接口,每次务必初始化数据后使用,neo4j按照README.md初始化,注意初始化可能需要一个多小时。底层数据库知识图谱采用neo4j,关系型数据库采用sqli
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。###首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Djan
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Django框
- NLP学习-05.问答系统基础-文本表示(word representation)-距离计算
logi
上几节已经介绍了文本的分词,拼写纠错,这节介绍wordrepresentation和距离的计算都比较简单,不做详细说明.什么是wordrepresentation即将一个文本进行向量化,这样可以容易地进行距离的度量.有哪些方法进行文本向量化onehot:每个词都用onehot变化表示成稀疏向量;booleanrepresentation:即词典的长度为向量长度,有词的记为1;booleanrepr
- 深度学习在知识图谱问答中的革新与挑战
cooldream2009
AI技术NLP知识知识图谱深度学习知识图谱人工智能
目录前言1背景知识2基于深度学习改进问句解析模型2.1谓词匹配2.2问句解析2.3逐步生成查询图3基于深度学习的端到端模型3.1端到端框架3.2简单嵌入技术4优势4.1深入的问题表示4.2实体关系表示深挖4.3候选答案排序效果好5挑战5.1依赖大量训练语料5.2推理类问句效果有限5.3可解释性差结语前言随着深度学习技术的迅猛发展,其在知识图谱问答领域的应用正成为推动智能问答系统发展的关键因素。本文
- 基于预训练语言模型的检索- 匹配式知识图谱问答系统
Necther
自然语言处理知识图谱语言模型人工智能
基于预训练语言模型的检索-匹配式知识图谱问答系统张鸿志,李如寐,王思睿,黄江华美团,北京市朝阳区100020{zhanghongzhi03,lirumei,wangsirui,huangjianghua}@http://meituan.comAbstract.本文介绍了我们在CCKS-2020的KBQA任务上的技术方案。该系统包括指称识别、实体链接、候选答案生成以及答案排序四个子模块。在指称识别中
- 文本信息抽取模型介绍——实体抽取方法:NER模型(下)
合合技术团队
【通用文本信息抽取技术白皮书】ocr人工智能
3.1.4常用的实体抽取模型LatticeLSTM新加坡科技设计大学的研究者2018年在论文《ChineseNERUsingLatticeLSTM》中提出了新型中文命名实体地识别方法LatticeLSTM。作为信息抽取的一项基本任务,命名实体识别(NER)近年来一直受到研究人员的关注。该任务一直被作为序列标注问题来解决,其中实体边界和类别标签被联合预测。英文NER目前的最高水准是使用LSTM-CR
- 完蛋!我把AI喂吐了!
有道AI情报局
有道QAnything人工智能机器学习算法
当我们用RAG构建一个知识库问答应用的时候,总是希望知识库里面灌的数据越多,问答的效果越好,事实真是如此吗?这篇文章给大家答案。引言在人工智能问答系统的发展中,RAG(Retrieval-AugmentedGeneration)技术以其独特的检索增强生成方式,为减少大模型幻觉开辟了新的天地。然而,在实际落地过程中有一个很大的疑问:RAG系统,数据越多效果越好吗?本文将深入分析数据量如何影响RAG系
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1