- 基于Prometheus和Grafana的现代服务器监控体系构建
丁爸
运维服务器
1.简介1.1.概述基于Prometheus和Grafana的现代服务器监控体系是一种高效、灵活的监控解决方案,广泛应用于云计算和微服务架构的环境中。以下是这一监控体系的概述:Prometheus:Prometheus是一个开源的系统监控和警报工具包,由SoundCloud开发并维护。它具有强大的数据收集能力、灵活的查询语言以及与微服务架构的无缝集成。Prometheus的核心概念包括时间序列数据
- 基于大模型的肺纤维化预测及临床方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法二、大模型技术概述2.1大模型的基本原理2.2大模型在医疗领域的应用现状三、肺纤维化相关知识3.1肺纤维化的病因与发病机制3.2肺纤维化的临床症状与诊断方法3.3肺纤维化的治疗现状与挑战四、大模型预测肺纤维化的方法4.1数据收集与预处理4.2模型选择与构建4.3模型训练与优化4.4模型评估与验证五、大模型在肺纤维化术前预测中的应用5.1手术风险评
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- AI如何预测比赛结果:体育预测技术全解析
翱翔的猪脑花
人工智能
利用人工智能技术构建一个完整的体育预测系统,涵盖数据收集、模型构建到部署应用的完整流程。一、系统架构设计1.整体架构数据采集层数据处理层模型训练层预测服务层应用展示层2.技术选型Python3.8+TensorFlow/PyTorchScikit-learnPandas/NumpyFlask/FastAPI二、数据收集与处理1.数据源集成python复制importrequestsimportpa
- AI DMP 数据基建:如何利用数据提升营销效率
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIDMP数据基建:如何利用数据提升营销效率关键词:AI、DMP、数据基建、营销效率、数据驱动、用户画像、精准投放、数据安全摘要:本文深入探讨了AI驱动的DMP(数据管理平台)在现代营销中的关键作用。文章详细阐述了AIDMP数据基建的核心概念、技术原理和实施步骤,包括数据收集、整合、分析和应用等方面。通过结合人工智能技术,DMP能够更精准地构建用户画像,优化营销策略,提高广告投放效率。文章还探讨了
- 基于Python的招聘岗位数据分析系统的设计与实现
youyouxiong
python开发语言
设计和实现一个基于Python的招聘岗位数据分析系统是一个涉及多个步骤的项目。以下是一个高层次的概述,包括一些关键的组件和步骤:1.需求分析确定目标用户:了解系统将服务于哪些用户,例如招聘人员、求职者或人力资源部门。功能需求:确定系统需要实现的功能,如数据收集、数据清洗、数据分析、可视化、用户交互等。2.数据收集数据源:确定数据来源,如在线招聘网站、公司数据库、公共API等。数据抓取:使用Pyth
- 利用深度学习进行汇率预测:LSTM与Transformer模型的应用实践
人工智能_SYBH
深度学习lstmtransformer
第一部分:数据收集与准备1.1数据集介绍1.2数据准备第二部分:使用LSTM模型进行汇率预测2.1数据序列化2.2LSTM模型构建2.3模型训练与评估2.4结果可视化第三部分:使用Transformer模型进行汇率预测3.1数据序列化3.2Transformer模型构建3.3模型训练与评估3.4结果可视化结论引言外汇市场是一个充满波动性的金融市场,吸引了众多交易者和投资者。为了做出明智的决策,预测
- 【数据挖掘】ARFF格式与数据收集
布鲁惠比寿
数据挖掘数据挖掘人工智能
【数据挖掘】ARFF格式与数据收集三级目录1.ARFF格式与数据收集2.稀疏数据3.属性类型4.缺失值与不正确的值5.了解数据6.知识表达7.聚类机器学习算法训练数据挖掘分析数据共享与交换三级目录1.ARFF格式与数据收集ARFF(Attribute-RelationFileFormat)是一种用于存储数据集的文本文件格式,常用于机器学习和数据挖掘领域。它可以表示结构化数据,包括属性定义、关系信息
- 知识图谱的作用及其更新方式
甜瓜瓜哥
面试人工智能知识图谱人工智能
知识图谱的作用及其更新方式简介作用1.语义理解和推理2.信息检索3.推荐系统4.自然语言处理5.智能对话系统更新知识图谱的过程1.数据收集2.数据清洗和处理3.知识抽取4.知识融合5.验证和评估6.部署和应用总结简介知识图谱是一种以图形结构表示知识的方法,它包含了实体(如人物、地点、事物)以及它们之间的关系。知识图谱可以用于帮助计算机理解和处理自然语言,进行信息检索,进行推荐系统等多种应用。作用1
- DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
小深ai硬件分享
人工智能大数据
AI浪潮下,推理服务器崭露头角在科技飞速发展的当下,AI是耀眼明星,席卷各行业,深刻改变生活与工作模式,从语音助手到医疗诊断、金融风险预测,AI无处不在。其发展分数据收集整理、模型训练、推理应用三个阶段,过去重模型训练,如今大量预训练模型出现,如何高效应用成新挑战,推理服务器应运而生。推理服务器是运行AI模型、对输入数据实时分析预测的硬件设备,堪称AI应用“幕后英雄”。在自动驾驶、智能安防、电商推
- Linux系统性能调优技巧
敖光 SRE
devopslinux运维服务器
Linux系统性能调优需要结合硬件资源、业务场景和系统瓶颈进行针对性优化。以下是系统化的调优思路和常用技巧,涵盖CPU、内存、磁盘、网络、内核参数等核心方向:一、性能分析工具速查工具用途示例命令top/htop实时监控进程CPU、内存占用htop-d10vmstat查看内存、进程、CPU上下文切换vmstat15iostat监控磁盘I/O和吞吐量iostat-x1sar历史性能数据收集(需安装sy
- 合作伙伴中心Partner Center中添加了Copilot预览版
xueyunshengling
微软合作伙伴计划合作伙伴中心copilotCopilot预览版
目录一、引言二、Copilot功能概述2.1Copilot简介2.2Copilot的核心功能2.3Copilot的访问和使用三、Copilot的使用方法3.1Copilot功能区域3.2Copilot使用示例3.2.1编写有效提示3.2.2使用反馈循环四、负责任的人工智能4.1Copilot结果的可靠性4.2意外或冒犯性内容的处理4.3Copilot数据收集五、总结一、引言合作伙伴中心(预览版)中
- 如何使用DeepSeek训练模型
LCG元
大模型人工智能
目录准备工作硬件要求软件环境数据收集与预处理数据收集数据预处理模型构建与训练模型构建模型训练模型评估与调优评估指标调优方法部署与应用部署方式应用集成✍️相关问答DeepSeek模型在医疗领域的具体应用案例有哪些?临床辅助诊疗:医患关系的连接桥梁:医疗科研的学术助手:医疗服务体系革新:医学影像诊断:药物研发:基层医疗能力提升:医疗机器人智能化:如何利用DeepSeek进行多模态数据分析?脑图使用De
- Python Pandas数据清洗之缺失数据处理
python慕遥
Pandaspythonpandas开发语言
大家好,在数据分析和处理过程中,缺失数据是常见且不可避免的现象。无论是在数据收集、传输或存储的过程中,数据集可能会出现部分丢失。缺失数据的存在不仅会影响数据的完整性,还可能对后续的数据分析和建模造成不利影响。为了保证数据质量,合理处理缺失数据至关重要。Python的Pandas库提供了强大的工具,能够高效处理数据中的缺失值,特别是通过插值和填充技术来弥补数据的缺失。本文将介绍如何使用Pandas处
- DeepSeek推荐未来好就业的十大专业
东锋1.3
人工智能deepseek推荐就业
一、人工智能与数据科学专业聚焦人工智能、大数据技术、计算机科学与技术、机器学习、数据科学与大数据技术等专业,构成了这一前沿领域的核心。这些专业旨在培养学生掌握从数据收集、处理到模型构建、算法优化的全流程能力。就业前景洞察人工智能已广泛渗透到医疗、金融、制造、交通等众多领域。在医疗领域,AI辅助诊断系统帮助医生更精准地识别疾病;金融行业里,智能风控模型有效防范风险。未来,算法工程师负责开发和优化各种
- 【人工智能在制造业的具体应用案例-质量控制】
局外人_Jia
深度学习大数据人工智能c#
首先,我需要明确质量控制的关键点。质量控制通常涉及产品检测、缺陷识别、数据分析等。可能用到的技术包括图像处理、机器学习模型、实时监控和数据收集等。我们已经了解预测性维护的步骤,所以需要类比但调整到质量控制上。比如数据采集可能不再是传感器数据,而是图像或视觉数据。需要思考如何用C#处理图像,是否有合适的库,比如OpenCV的.NET版本EmguCV。接下来,数据处理部分可能需要特征提取,比如从图像中
- Python机器学习舆情分析项目案例分享
数澜悠客
数字化转型python机器学习开发语言
数据收集与准备1.数据收集多样化数据源:从社交媒体平台(如微博、Twitter)、新闻网站、论坛等多渠道收集数据,以获取更全面的舆情信息。可以使用Python的requests库和网页解析库(如BeautifulSoup)进行网页数据爬取,使用Tweepy库获取Twitter数据。数据标注:对于监督学习,需要对收集到的数据进行标注,标记为积极、消极或中性等类别。可以使用人工标注的方式,也可以利用半
- 什么是海外静态IP
z10_14
tcp/ip网络协议网络
海外静态IP是指分配给位于国外的固定用户的、不会改变的IP地址。以下是对海外静态IP的详细分享:一、海外静态IP的特点稳定性:海外静态IP不会随着用户的网络活动而改变,可以长期保持不变,因此具有高度的稳定性。可靠性:由于IP地址固定不变,用户可以更加可靠地访问目标资源,减少因IP变动而导致的连接问题。应用场景广泛:海外静态IP常用于跨境电商、远程协作、网站托管、数据收集与分析等多个领域。二、海外静
- 利用DeepSeek构建个人知识库可以通过其AI能力实现高效的知识管理和检索
rockmelodies
神经网络人工智能架构
利用DeepSeek构建个人知识库可以通过其AI能力实现高效的知识管理和检索。以下是分步骤指南:1.确定知识库需求目标:明确知识库用途(如学习笔记、工作文档、研究资料)。格式:确定支持的格式(文本、PDF、网页、Markdown、Excel等)。规模:预估数据量级(小型个人库or大规模专业库)。2.数据收集与预处理数据来源:本地文件:整理文档、笔记、电子书等。网络资源:爬取网页、保存文章链接。结构
- 全域智慧采摘无人机系统探索
百态老人
生成式AI经验分享科技人工智能笔记
在实现“全域智慧采摘无人机系统”过程中,需要解决一系列关键技术难题。以下是重新梳理的100个重点问题:一、感知与识别1.多作物识别:不同形态和颜色的瓜果蔬菜的准确识别。全域智慧采摘无人机系统的多作物识别是一个涉及多个技术领域的复杂任务。要实现不同形态和颜色的瓜果蔬菜的准确识别,可以遵循以下步骤:数据收集与预处理:收集大量不同种类、颜色和形态的瓜果蔬菜的图片数据。确保数据集中包含各种条件下的图片,如
- DeepSeek Coder 的训练数据集是如何构建的?
百态老人
人工智能算法大数据
DeepSeekCoder的训练数据集构建过程涉及多个步骤和策略,其核心目标是确保高质量、多样性和针对性的数据,以支持模型在代码生成和任务完成中的卓越表现。以下是其主要构建方法和特点:数据来源与过滤:数据主要来源于GitHub,包括代码、Markdown格式的文件(如GitHub的README和StackExchange)以及高质量的中文文章。数据收集后,通过基于规则的过滤、依赖关系解析和去重策略
- 【RabbitMQ的x-death头】消息死亡记录头流转示例
星星点点洲
RabbitMQrabbitmq分布式
@Header(name="x-death",required=false)List>xDeath是用于捕获RabbitMQ自动生成的消息死亡记录头信息。以下是详细解析和实际应用示例:x-death头的作用死亡原因追踪:记录消息被拒绝/过期的完整生命周期重试次数判定:通过数组长度判断当前是第几次消费失败诊断数据收集:包含原始路由键、失败时间、队列名称等关键信息x-death数据结构示例[{"cou
- Baklib赋能下的内容中台智能化推荐系统解析与展望
数字体验运营官
其他
内容概要在数字化时代,内容中台的智能化推荐系统正逐渐成为各类企业提升用户体验与运营效率的重要工具。该系统通过集成和分析大量用户数据及内容信息,能够实现精准的个性化推荐,为用户提供最相关的内容。以下是内容中台智能化推荐系统的核心要素:要素描述用户数据收集通过多种渠道(如网站、APP等)实时获取用户行为数据,构建用户画像。内容特征提取分析内容的主题、类型、受众等特征,为后续推荐提供支持。推荐算法运用机
- 元宇宙中隐私保护难题,Web3 带来哪些创新解决方案
Roun3
web3web3智能合约隐私保护元宇宙
随着元宇宙的快速发展,数字化世界的边界变得越来越模糊。虚拟现实与增强现实的结合让人们在沉浸式体验中享受更广泛的社交、娱乐和工作场景,但随之而来的隐私保护问题也变得愈发严峻。用户的个人数据、行为轨迹、社交关系等都在网络空间中留下痕迹,这些信息一旦遭到泄露或滥用,将对个人隐私和社会安全造成不可估量的影响。元宇宙中的隐私挑战在元宇宙中,隐私保护面临的主要问题主要有以下几个方面:数据收集的无所不在:在虚拟
- AI学习指南HuggingFace篇-项目实战:情感分析系统
俞兆鹏
AI学习指南ai
一、引言情感分析是自然语言处理(NLP)中的一个重要应用,广泛用于舆情分析、用户反馈分析等领域。HuggingFace的Transformers库提供了强大的工具,使得情感分析变得简单高效。本文将通过一个完整的项目案例,从数据收集、模型训练到部署,展示HuggingFace在情感分析中的实战应用。二、项目实战:情感分析系统(一)数据收集情感分析通常需要一个包含文本和对应情感标签的数据集。Huggi
- C# 提取PDF表单数据
nuclear2011
.NETPDFc#PDF表单提取PDF表单数据读取PDF表单域获取PDF表单字段的值
目录使用工具C#提取多个PDF表单域的数据C#提取特定PDF表单域的数据PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景。凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用。然而,当需要整合、分析或导入大量已填写的表单数据时,传统的手动处理方式不仅耗时,而且容易出错。因此,掌握自动提取PDF表单数据的方法,不仅能大幅提高工作效率,还能确保数据处理的准确性
- 大数据架构:从数据收集到分析的完整流程
勤劳兔码农
大数据架构
大数据架构:从数据收集到分析的完整流程在现代数据驱动的世界中,大数据技术变得至关重要。企业和组织通过大数据架构来收集、存储、处理和分析大量的数据,以提取有价值的见解和信息。这篇文章将详细介绍大数据架构的完整流程,从数据收集到数据分析,涵盖每一个关键环节,并提供具体的代码示例,以便于深入理解。1.数据收集1.1数据来源数据收集是大数据架构中的第一个关键环节。数据来源广泛,包括但不限于:传感器数据:来
- SQL进阶实战技巧:如何构建用户行为转移概率矩阵,深入洞察会话内活动流转?
莫叫石榴姐
数字化建设通关指南#SQL进阶实战技巧sql数据库数据分析大数据hive
目录1场景描述1.1用户行为转移概率矩阵概念1.2用户行为转移概率矩阵构建方法(1)数据收集
- 量化交易系统中+如何实现实时数据分析和决策支持?
openwin_top
量化交易系统开发数据分析数据挖掘数据库架构量化交易机器学习人工智能
microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位在量化交易系统中,实现实时数据分析和决策支持是至关重要的。以下是详细的步骤和示例,说明如何实现这一目标。1.数据收集首先,需要收集实时市场数据。这些数据通常来自交易所、市场数据供应商或其他金融数据服
- 《告别监控焦虑!Kylin系统Zabbix保姆级安装手册》
入眼皆含月
kylinzabbix大数据
一、概况Zabbix是一个广泛使用的企业级开源监控解决方案,能够监控网络、服务器、虚拟机和云服务等IT基础设施。它通过灵活的通知机制,使用户能够为几乎所有事件配置基于电子邮件的警报,从而快速响应服务器问题。二、Zabbix的主要功能(1)全面的监控能力:能够监控几乎所有类型的IT组件,包括操作系统性能、网络设备、数据库、应用程序等。(2)灵活的数据收集方式:支持多种数据收集方法,如SNMP、IPM
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo