=====================================================
视音频数据处理入门系列文章:
视音频数据处理入门:RGB、YUV像素数据处理
视音频数据处理入门:PCM音频采样数据处理
视音频数据处理入门:H.264视频码流解析
视音频数据处理入门:AAC音频码流解析
视音频数据处理入门:FLV封装格式解析
视音频数据处理入门:UDP-RTP协议解析
=====================================================
有段时间没有写博客了,这两天写起博客来竟然感觉有些兴奋,仿佛找回了原来的感觉。前一阵子在梳理以前文章的时候,发现自己虽然总结了各种视音频应用程序,却还缺少一个适合无视音频背景人员学习的“最基础”的程序。因此抽时间将以前写过的代码整理成了一个小项目。这个小项目里面包含了一系列简单的函数,可以对RGB/YUV视频像素数据、PCM音频采样数据、H.264视频码流、AAC音频码流、FLV封装格式数据、UDP/RTP协议数据进行简单处理。这个项目的一大特点就是没有使用任何的第三方类库,完全借助于C语言的基本函数实现了功能。通过对这些代码的学习,可以让初学者迅速掌握视音频数据的基本格式。有关上述几种格式的介绍可以参考文章《[总结]视音频编解码技术零基础学习方法》。
从这篇文章开始打算写6篇文章分别记录上述6种不同类型的视音频数据的处理方法。本文首先记录第一部分即RGB/YUV视频像素数据的处理方法。视频像素数据在视频播放器的解码流程中的位置如下图所示。
本文中的RGB/YUV文件需要使用RGB/YUV播放器才能查看。YUV播放器种类比较多,例如YUV Player Deluxe,或者开源播放器(参考文章《修改了一个YUV/RGB播放器》)等。
/**
* Split Y, U, V planes in YUV420P file.
* @param url Location of Input YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param num Number of frames to process.
*
*/
int simplest_yuv420_split(char *url, int w, int h,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_420_y.y","wb+");
FILE *fp2=fopen("output_420_u.y","wb+");
FILE *fp3=fopen("output_420_v.y","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3/2);
for(int i=0;i
simplest_yuv420_split("lena_256x256_yuv420p.yuv",256,256,1);
从代码可以看出,如果视频帧的宽和高分别为w和h,那么一帧YUV420P像素数据一共占用w*h*3/2 Byte的数据。其中前w*h Byte存储Y,接着的w*h*1/4 Byte存储U,最后w*h*1/4 Byte存储V。上述调用函数的代码运行后,将会把一张分辨率为256x256的名称为lena_256x256_yuv420p.yuv的YUV420P格式的像素数据文件分离成为三个文件:
output_420_y.y:纯Y数据,分辨率为256x256。
output_420_u.y:纯U数据,分辨率为128x128。output_420_v.y:纯V数据,分辨率为128x128。
注:本文中像素的采样位数一律为8bit。由于1Byte=8bit,所以一个像素的一个分量的采样值占用1Byte。
程序输入的原图如下所示。
lena_256x256_yuv420p.yuv
程序输出的三个文件的截图如下图所示。在这里需要注意输出的U、V分量在YUV播放器中也是当做Y分量进行播放的。
output_420_y.y
output_420_u.y和output_420_v.y
/**
* Split Y, U, V planes in YUV444P file.
* @param url Location of YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param num Number of frames to process.
*
*/
int simplest_yuv444_split(char *url, int w, int h,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_444_y.y","wb+");
FILE *fp2=fopen("output_444_u.y","wb+");
FILE *fp3=fopen("output_444_v.y","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3);
for(int i=0;i
simplest_yuv444_split("lena_256x256_yuv444p.yuv",256,256,1);
从代码可以看出,如果视频帧的宽和高分别为w和h,那么一帧YUV444P像素数据一共占用w*h*3 Byte的数据。其中前w*h Byte存储Y,接着的w*h Byte存储U,最后w*h Byte存储V。上述调用函数的代码运行后,将会把一张分辨率为256x256的名称为lena_256x256_yuv444p.yuv的YUV444P格式的像素数据文件分离成为三个文件:
output_444_y.y:纯Y数据,分辨率为256x256。
output_444_u.y:纯U数据,分辨率为256x256。
output_444_v.y:纯V数据,分辨率为256x256。
输入的原图如下所示。
输出的三个文件的截图如下图所示。
output_444_y.y
output_444_u.y
/**
* Convert YUV420P file to gray picture
* @param url Location of Input YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param num Number of frames to process.
*/
int simplest_yuv420_gray(char *url, int w, int h,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_gray.yuv","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3/2);
for(int i=0;i
调用上面函数的方法如下所示。
simplest_yuv420_gray("lena_256x256_yuv420p.yuv",256,256,1);
/**
* Halve Y value of YUV420P file
* @param url Location of Input YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param num Number of frames to process.
*/
int simplest_yuv420_halfy(char *url, int w, int h,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_half.yuv","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3/2);
for(int i=0;i
simplest_yuv420_halfy("lena_256x256_yuv420p.yuv",256,256,1);
从代码可以看出,如果打算将图像的亮度减半,只要将图像的每个像素的Y值取出来分别进行除以2的工作就可以了。图像的每个Y值占用1 Byte,取值范围是0至255,对应C语言中的unsigned char数据类型。上述调用函数的代码运行后,将会把一张分辨率为256x256的名称为lena_256x256_yuv420p.yuv的YUV420P格式的像素数据文件处理成名称为output_half.yuv的YUV420P格式的像素数据文件。输入的原图如下所示。
/**
* Add border for YUV420P file
* @param url Location of Input YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param border Width of Border.
* @param num Number of frames to process.
*/
int simplest_yuv420_border(char *url, int w, int h,int border,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_border.yuv","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3/2);
for(int i=0;i(w-border)||j(h-border)){
pic[j*w+k]=255;
//pic[j*w+k]=0;
}
}
}
fwrite(pic,1,w*h*3/2,fp1);
}
free(pic);
fclose(fp);
fclose(fp1);
return 0;
}
simplest_yuv420_border("lena_256x256_yuv420p.yuv",256,256,20,1);
从代码可以看出,图像的边框的宽度为border,本程序将距离图像边缘border范围内的像素的亮度分量Y的取值设置成了亮度最大值255。上述调用函数的代码运行后,将会把一张分辨率为256x256的名称为lena_256x256_yuv420p.yuv的YUV420P格式的像素数据文件处理成名称为output_border.yuv的YUV420P格式的像素数据文件。输入的原图如下所示。
处理后的图像如下所示。
/**
* Generate YUV420P gray scale bar.
* @param width Width of Output YUV file.
* @param height Height of Output YUV file.
* @param ymin Max value of Y
* @param ymax Min value of Y
* @param barnum Number of bars
* @param url_out Location of Output YUV file.
*/
int simplest_yuv420_graybar(int width, int height,int ymin,int ymax,int barnum,char *url_out){
int barwidth;
float lum_inc;
unsigned char lum_temp;
int uv_width,uv_height;
FILE *fp=NULL;
unsigned char *data_y=NULL;
unsigned char *data_u=NULL;
unsigned char *data_v=NULL;
int t=0,i=0,j=0;
barwidth=width/barnum;
lum_inc=((float)(ymax-ymin))/((float)(barnum-1));
uv_width=width/2;
uv_height=height/2;
data_y=(unsigned char *)malloc(width*height);
data_u=(unsigned char *)malloc(uv_width*uv_height);
data_v=(unsigned char *)malloc(uv_width*uv_height);
if((fp=fopen(url_out,"wb+"))==NULL){
printf("Error: Cannot create file!");
return -1;
}
//Output Info
printf("Y, U, V value from picture's left to right:\n");
for(t=0;t<(width/barwidth);t++){
lum_temp=ymin+(char)(t*lum_inc);
printf("%3d, 128, 128\n",lum_temp);
}
//Gen Data
for(j=0;j
simplest_yuv420_graybar(640, 360,0,255,10,"graybar_640x360.yuv");
Y |
U |
V |
0 |
128 |
128 |
28 |
128 |
128 |
56 |
128 |
128 |
85 |
128 |
128 |
113 |
128 |
128 |
141 |
128 |
128 |
170 |
128 |
128 |
198 |
128 |
128 |
226 |
128 |
128 |
255 |
128 |
128 |
/**
* Calculate PSNR between 2 YUV420P file
* @param url1 Location of first Input YUV file.
* @param url2 Location of another Input YUV file.
* @param w Width of Input YUV file.
* @param h Height of Input YUV file.
* @param num Number of frames to process.
*/
int simplest_yuv420_psnr(char *url1,char *url2,int w,int h,int num){
FILE *fp1=fopen(url1,"rb+");
FILE *fp2=fopen(url2,"rb+");
unsigned char *pic1=(unsigned char *)malloc(w*h);
unsigned char *pic2=(unsigned char *)malloc(w*h);
for(int i=0;i
simplest_yuv420_psnr("lena_256x256_yuv420p.yuv","lena_distort_256x256_yuv420p.yuv",256,256,1);
上述公式中mse的计算公式如下所示。
其中M,N分别为图像的宽高,xij和yij分别为两张图像的每一个像素值。PSNR通常用于质量评价,就是计算受损图像与原始图像之间的差别,以此来评价受损图像的质量。本程序输入的两张图像的对比图如下图所示。其中左边的图像为原始图像,右边的图像为受损图像。
/**
* Split R, G, B planes in RGB24 file.
* @param url Location of Input RGB file.
* @param w Width of Input RGB file.
* @param h Height of Input RGB file.
* @param num Number of frames to process.
*
*/
int simplest_rgb24_split(char *url, int w, int h,int num){
FILE *fp=fopen(url,"rb+");
FILE *fp1=fopen("output_r.y","wb+");
FILE *fp2=fopen("output_g.y","wb+");
FILE *fp3=fopen("output_b.y","wb+");
unsigned char *pic=(unsigned char *)malloc(w*h*3);
for(int i=0;i
simplest_rgb24_split("cie1931_500x500.rgb", 500, 500,1);
从代码可以看出,与YUV420P三个分量分开存储不同,RGB24格式的每个像素的三个分量是连续存储的。一帧宽高分别为w、h的RGB24图像一共占用w*h*3 Byte的存储空间。RGB24格式规定首先存储第一个像素的R、G、B,然后存储第二个像素的R、G、B…以此类推。类似于YUV420P的存储方式称为Planar方式,而类似于RGB24的存储方式称为Packed方式。上述调用函数的代码运行后,将会把一张分辨率为500x500的名称为cie1931_500x500.rgb的RGB24格式的像素数据文件分离成为三个文件:
output_r.y:R数据,分辨率为256x256。
output_g.y:G数据,分辨率为256x256。output_b.y:B数据,分辨率为256x256。
输入的原图是一张标准的CIE 1931色度图。该色度图右下为红色,上方为绿色,左下为蓝色,如下所示。
R数据图像如下所示。
G数据图像如下所示。
B数据图像如下所示。
/**
* Convert RGB24 file to BMP file
* @param rgb24path Location of input RGB file.
* @param width Width of input RGB file.
* @param height Height of input RGB file.
* @param url_out Location of Output BMP file.
*/
int simplest_rgb24_to_bmp(const char *rgb24path,int width,int height,const char *bmppath){
typedef struct
{
long imageSize;
long blank;
long startPosition;
}BmpHead;
typedef struct
{
long Length;
long width;
long height;
unsigned short colorPlane;
unsigned short bitColor;
long zipFormat;
long realSize;
long xPels;
long yPels;
long colorUse;
long colorImportant;
}InfoHead;
int i=0,j=0;
BmpHead m_BMPHeader={0};
InfoHead m_BMPInfoHeader={0};
char bfType[2]={'B','M'};
int header_size=sizeof(bfType)+sizeof(BmpHead)+sizeof(InfoHead);
unsigned char *rgb24_buffer=NULL;
FILE *fp_rgb24=NULL,*fp_bmp=NULL;
if((fp_rgb24=fopen(rgb24path,"rb"))==NULL){
printf("Error: Cannot open input RGB24 file.\n");
return -1;
}
if((fp_bmp=fopen(bmppath,"wb"))==NULL){
printf("Error: Cannot open output BMP file.\n");
return -1;
}
rgb24_buffer=(unsigned char *)malloc(width*height*3);
fread(rgb24_buffer,1,width*height*3,fp_rgb24);
m_BMPHeader.imageSize=3*width*height+header_size;
m_BMPHeader.startPosition=header_size;
m_BMPInfoHeader.Length=sizeof(InfoHead);
m_BMPInfoHeader.width=width;
//BMP storage pixel data in opposite direction of Y-axis (from bottom to top).
m_BMPInfoHeader.height=-height;
m_BMPInfoHeader.colorPlane=1;
m_BMPInfoHeader.bitColor=24;
m_BMPInfoHeader.realSize=3*width*height;
fwrite(bfType,1,sizeof(bfType),fp_bmp);
fwrite(&m_BMPHeader,1,sizeof(m_BMPHeader),fp_bmp);
fwrite(&m_BMPInfoHeader,1,sizeof(m_BMPInfoHeader),fp_bmp);
//BMP save R1|G1|B1,R2|G2|B2 as B1|G1|R1,B2|G2|R2
//It saves pixel data in Little Endian
//So we change 'R' and 'B'
for(j =0;j
simplest_rgb24_to_bmp("lena_256x256_rgb24.rgb",256,256,"output_lena.bmp");
BMP文件是由BITMAPFILEHEADER、BITMAPINFOHEADER、RGB像素数据共3个部分构成,它的结构如下图所示。
BITMAPFILEHEADER |
BITMAPINFOHEADER |
RGB像素数据 |
typedef struct tagBITMAPFILEHEADER
{
unsigned short int bfType; //位图文件的类型,必须为BM
unsigned long bfSize; //文件大小,以字节为单位
unsigned short int bfReserverd1; //位图文件保留字,必须为0
unsigned short int bfReserverd2; //位图文件保留字,必须为0
unsigned long bfbfOffBits; //位图文件头到数据的偏移量,以字节为单位
}BITMAPFILEHEADER;
typedef struct tagBITMAPINFOHEADER
{
long biSize; //该结构大小,字节为单位
long biWidth; //图形宽度以象素为单位
long biHeight; //图形高度以象素为单位
short int biPlanes; //目标设备的级别,必须为1
short int biBitcount; //颜色深度,每个象素所需要的位数
short int biCompression; //位图的压缩类型
long biSizeImage; //位图的大小,以字节为单位
long biXPelsPermeter; //位图水平分辨率,每米像素数
long biYPelsPermeter; //位图垂直分辨率,每米像素数
long biClrUsed; //位图实际使用的颜色表中的颜色数
long biClrImportant; //位图显示过程中重要的颜色数
}BITMAPINFOHEADER;
下图为输入的RGB24格式的图像lena_256x256_rgb24.rgb。
下图分封装为BMP格式后的图像output_lena.bmp。封装后的图像使用普通的看图软件就可以查看。
unsigned char clip_value(unsigned char x,unsigned char min_val,unsigned char max_val){
if(x>max_val){
return max_val;
}else if(x> 8) + 16 ;
u = (unsigned char)( ( -38 * r - 74 * g + 112 * b + 128) >> 8) + 128 ;
v = (unsigned char)( ( 112 * r - 94 * g - 18 * b + 128) >> 8) + 128 ;
*(ptrY++) = clip_value(y,0,255);
if (j%2==0&&i%2 ==0){
*(ptrU++) =clip_value(u,0,255);
}
else{
if (i%2==0){
*(ptrV++) =clip_value(v,0,255);
}
}
}
}
return true;
}
/**
* Convert RGB24 file to YUV420P file
* @param url_in Location of Input RGB file.
* @param w Width of Input RGB file.
* @param h Height of Input RGB file.
* @param num Number of frames to process.
* @param url_out Location of Output YUV file.
*/
int simplest_rgb24_to_yuv420(char *url_in, int w, int h,int num,char *url_out){
FILE *fp=fopen(url_in,"rb+");
FILE *fp1=fopen(url_out,"wb+");
unsigned char *pic_rgb24=(unsigned char *)malloc(w*h*3);
unsigned char *pic_yuv420=(unsigned char *)malloc(w*h*3/2);
for(int i=0;i
simplest_rgb24_to_yuv420("lena_256x256_rgb24.rgb",256,256,1,"output_lena.yuv");
从源代码可以看出,本程序实现了RGB到YUV的转换公式:
Y= 0.299*R+0.587*G+0.114*B
V= 0.615*R-0.515*G-0.100*B
在转换的过程中有以下几点需要注意:转换前的RGB24格式像素数据lena_256x256_rgb24.rgb的内容如下所示。
转换后的YUV420P格式的像素数据output_lena.yuv的内容如下所示。
/**
* Generate RGB24 colorbar.
* @param width Width of Output RGB file.
* @param height Height of Output RGB file.
* @param url_out Location of Output RGB file.
*/
int simplest_rgb24_colorbar(int width, int height,char *url_out){
unsigned char *data=NULL;
int barwidth;
char filename[100]={0};
FILE *fp=NULL;
int i=0,j=0;
data=(unsigned char *)malloc(width*height*3);
barwidth=width/8;
if((fp=fopen(url_out,"wb+"))==NULL){
printf("Error: Cannot create file!");
return -1;
}
for(j=0;j
simplest_rgb24_colorbar(640, 360,"colorbar_640x360.rgb");
颜色 |
(R, G, B) |
白 |
(255, 255, 255) |
黄 |
(255, 255, 0) |
青 |
( 0, 255, 255) |
绿 |
( 0, 255, 0) |
品 |
(255, 0, 255) |
红 |
(255, 0, 0) |
蓝 |
( 0, 0, 255) |
黑 |
( 0, 0, 0) |
Simplest mediadata test
SourceForge:https://sourceforge.net/projects/simplest-mediadata-test/
Github:https://github.com/leixiaohua1020/simplest_mediadata_test
开源中国: http://git.oschina.net/leixiaohua1020/simplest_mediadata_test(6)UDP-RTP协议分析程序。可以将分析UDP/RTP/MPEG-TS数据包。
雷霄骅 (Lei Xiaohua)
[email protected]
http://blog.csdn.net/leixiaohua1020