- AI在科研中的应用:chatgptgpt4的数据分析与机器学习
zmjia111
人工智能深度学习gpt人工智能数据分析机器学习chatgpt深度学习pytorch数据挖掘
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- (二十一)Seaborn知识学习8-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-05-17课程来源:python数据分析与机器学习实战-唐宇迪引言:介绍seaborn热度图绘制学习参考链接:1、Seaborn官方0.8.1版本首先介绍以下热度图的作用,拿出离散群数据,离散群数据可能会发生波动变化.看一下哪个点的值比较高,看一下哪个点的值比较低?通过值的变化,用颜色表现出来,这个是我们要做的一件事.热度图是由不同的颜色构成的,这个颜色由可能是由浅入
- ChatGPT GPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术
夏日恋雨
人工智能chatgpt数据分析AI大数据机器学习python数据挖掘
原文链接:ChatGPTGPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247596849&idx=3&sn=111d68286f9752008bca95a5ec575bb3&chksm=fa823ad6cdf5b3c0c446eceb5cf29cccc3161d746bd
- (十二)Matplotlib知识学习4-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-05-91.原数据的展示2.柱形图的绘制3.散点图的绘制课程来源:python数据分析与机器学习实战-唐宇迪为了方便大家学习,将练习所涉及的练习fandango_scores.csv文件以百度网盘共享的方式分享出来.链接:https://pan.baidu.com/s/1yR7qkY4SjGdCiP-hqOXQRQ密码:wf5f1.原数据的展示对fandango_sc
- python数据分析与挖掘论文_《Python数据分析与机器学习实战-唐宇迪》读书笔记第10章-特征工程...
weixin_39616477
python数据分析与挖掘论文
第10章特征工程特征工程是整个机器学习中非常重要的一部分,如何对数据进行特征提取对最终结果的影响非常大。在建模过程中,一般会优先考虑算法和参数,但是数据特征才决定了整体结果的上限,而算法和参数只决定了如何逼近这个上限。特征工程其实就是要从原始数据中找到最有价值的信息,并转换成计算机所能读懂的形式。本章结合数值数据与文本数据来分别阐述如何进行数值特征与文本特征的提取。10.1数值特征实际数据中,最常
- 阶段四:数据分析与机器学习(掌握使用scikit-learn库进行高级机器学习)
哈嗨哈
机器学习python数据分析
Scikit-learn是一个在Python中实现机器学习的强大库。以下是一些如何使用scikit-learn进行高级机器学习的基本步骤:数据导入和预处理:首先,你需要导入你的数据集。这通常通过pandas库完成,然后对数据进行预处理,包括数据清洗,缺失值处理,异常值处理,数据标准化等。importpandasaspdfromsklearn.preprocessingimportStandardS
- Python数据分析与机器学习34-DBSCAN实例
只是甲
一.数据源介绍数据源:一个啤酒的数据源,为了方便演示,数据只有20行。image.pngname啤酒的名称calories啤酒的卡路里sodium纳元素含量alcohol酒精含量cost价格二.使用DBSCAN进行聚类代码:importpandasaspdfromsklearn.clusterimportDBSCANfrompandas.plottingimportscatter_matrixim
- 阶段四:数据分析与机器学习(学习如何使用matplotlib和seaborn进行数据可视化)
哈嗨哈
数据分析机器学习学习
Matplotlib和Seaborn是Python中常用的数据可视化库。Matplotlib是一个基本的绘图库,可以用于绘制各种静态、动态、交互式和三维图表。Seaborn基于Matplotlib,提供了更高级的接口和更美观的默认样式。下面是一个简单的教程,介绍如何使用Matplotlib和Seaborn进行数据可视化:安装库首先,需要安装Matplotlib和Seaborn。可以使用pip命令进
- 分享2024年第一期!全国高校大数据与人工智能师资研修班
泰迪智能科技
师资培训大数据人工智能
全国高校大数据与人工智能师资研修班2024年第一期上海线下班:数据采集与机器学习实战广州线下班:大数据技术应用实战(Hadoop+Spark)线上班(十一大专题)PyTorch深度学习与大模型应用实战数据采集与处理实战大数据分析与机器学习实战大数据技术应用实战(Hadoop+Spark)商务数据分析实战(Excel+PowerBI)商务数据分析实战(Python)计算机视觉应用实战(Pytorch
- 阶段四:数据分析与机器学习(掌握NumPy和Pandas库,用于数据处理和分析)
哈嗨哈
数据分析机器学习numpy
Python的NumPy和Pandas库是数据处理和分析的重要工具。NumPy(NumericalPython)提供了高性能的数值计算工具,适用于大规模多维数组和矩阵的运算。Pandas则提供了强大的数据结构和数据分析工具,使得数据处理和分析变得更加便捷。以下是掌握NumPy和Pandas库的一些建议:熟悉基本语法和数据类型NumPy:了解NumPy数组(ndarray)的创建、索引和切片。熟悉N
- 使用NumPy和scikit-learn进行数据分析与机器学习
XadxShapes
机器学习numpyscikit-learnNumPy
数据分析和机器学习是当今信息时代中不可或缺的重要领域。在处理大规模数据集和实现复杂的机器学习算法时,NumPy和scikit-learn成为了Python中最常用的工具库之一。本文将介绍如何利用NumPy和scikit-learn进行数据分析和机器学习,并提供相应的源代码示例。引言NumPy是Python中用于科学计算的核心库之一。它提供了高性能的多维数组对象(ndarray),以及用于处理这些数
- 机器学习实战 ——《跟着迪哥学Python数据分析与机器学习实战》(2)
躬身入世,以生证道
ML&DL技术栈机器学习
机器学习实战——《跟着迪哥学Python数据分析与机器学习实战》(2)七、贝叶斯算法7.1新闻分类任务实战7.1.1结巴分词7.1.2词云表示工具包wordcloud7.1.3TF-IDF特征八、聚类算法8.1K-meansK-均值聚类算法评估指标优缺点8.2DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)基于密度的聚类算法
- Python数据分析与机器学习43-时间序列模型
只是甲
数据分析+机器学习Python#Python数据分析与机器学习python机器学习数据分析
文章目录一.时间序列的定义二.平稳性三.差分法(I)四.自回归模型(AR)五.移动平均模型(MA)六.自回归移动平均模型(ARMA)七.ARIMA7.1自相关函数ACF(autocorrelationfunction)7.2偏自相关函数(PACF)(partialautocorrelationfunction)7.3ARIMA(p,d,q)阶数确定7.4ARIMA建模流程7.4.1模型选择7.4.
- Python数据分析与机器学习35-PCA降维
只是甲
数据分析+机器学习Python#Python数据分析与机器学习机器学习python数据分析
文章目录一.PCA概述二.向量的表示及基变换2.1向量的表示2.2基变换三.协方差矩阵四.协方差五.优化目标六.PCA实例参考:一.PCA概述PCA是PrincipalComponentAnalysis,主成分分析。用途:降维中最常用的一种手段目标:提取最有价值的信息(基于方差)问题:降维后的数据的意义?二.向量的表示及基变换2.1向量的表示内积:解释:设向量B的模为1,则A与B的内积值等于A向B
- Python数据分析与机器学习32-聚类算法
只是甲
数据分析+机器学习Python#Python数据分析与机器学习机器学习python算法
文章目录一.聚类概念二.K-MEANS算法2.1基本概念2.2工作流程2.3优势和劣势三.DBSCAN算法3.1基本概念3.2工作流程3.3参数选择3.4优势和劣势3.4.1优势3.4.2劣势四.算法可视化参考:一.聚类概念无监督问题:我们手里没有标签了聚类:相似的东西分到一组难点:如何评估,如何调参二.K-MEANS算法2.1基本概念K值:要得到簇的个数,需要指定K值(我们需要将数据分为几类,K
- Python数据分析与机器学习18- 逻辑回归项目实战2-样本不均匀解决方案
只是甲
数据分析+机器学习#Python数据分析与机器学习Pythonpython机器学习数据分析
文章目录一.样本不均匀带来的影响二.处理样本不均衡问题的方法2.1权重法2.2采样法三.实例3.1下采样3.2SMOTE方法参考:一.样本不均匀带来的影响我们从样本数据中知道,正常的交易数据有2.8w左右数据,异常的交易数据有492,正常的交易数据与异常交易数据差距非常大,这样会导致我们模型的效果不佳。下面我们来列举一个案例:代码:importpandasaspdimportmatplotlib.
- 机器学习实战——《跟着迪哥学Python数据分析与机器学习实战》
躬身入世,以生证道
机器学习机器学习python数据分析
跟着迪哥学Python数据分析与机器学习实战一、基础部分二、信用卡欺诈检测实战——监督学习2.1下采样与过采样2.1.1过采样数据生成策略SMOTE2.2逻辑回归2.3分类结果混淆矩阵2.4过采样实战2.5实战总结2.6版本依赖排错三、知识加油站¥银行卡的分类一、基础部分//@PASS,遇到有不会的再写,直接上手实战二、信用卡欺诈检测实战——监督学习背景:信用卡欺诈是指故意使用伪造、作废的信用卡,
- 2023年第七期丨全国高校大数据与人工智能师资研修班
泰迪智能科技
大数据大数据人工智能
全国高校大数据与人工智能师资研修班邀请函2023年第七期线下班(昆明):数据采集与机器学习实战线上班(七大专题):PyTorch深度学习与大模型应用实战数据采集与处理实战大数据分析与机器学习实战大数据技术应用实战(Hadoop+Spark)商务数据分析实战TensorFlow与人工智能实战计算机视觉应用实战
- 每日一课 | 用Python做一款俄罗斯方块游戏(文末彩蛋)
Python大本营
游戏算法slam人工智能python
作者|Ahab,专注与Python数据挖掘、数据分析与机器学习来源|Ahab杂货铺编辑|Jane【编者按】之前作者用Python做了一款俄罗斯方块的小游戏,这次,作者在原来工作的基础上进行了升级,用AI算法实现了一款俄罗斯方块。一起来跟作者学一下吧~人工智能大火的今天,如果还是自己玩俄罗斯方块未免显得太LOW,为什么不对游戏升级,让机器自己去玩俄罗斯方块呢?有了这个想法之后利用周六周日两天的时间去
- 数据分析实战——货币分析与预测
@李忆如
机器学习实践数据分析python数据挖掘大数据
目录一、比特币分析与预测1.前置准备2.比特币价格变化趋势分析3.稳定性检测与时间序列检测4.数据变化5.模型分析6.残留物分析7.预测二、参考资料总结梗概本篇博客主要通过几个实例(不断更新,欢迎关注!)实践各种数据分析与机器学习处理方法(内附数据集与python代码)一、货币分析与预测1.前置准备下载数据库(包含各时段价格、时间等因素),下载地址为BitcoinHistoricalData|Ka
- (二十八)项目实战|交易数据异常检测(三)-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-06-41.混淆矩阵课程来源:python数据分析与机器学习实战-唐宇迪课程资料:这里所涉及到的练习资料creditcard.csv相关的链接以及密码如下:链接:https://pan.baidu.com/s/1APgU4cTAaM9zb8_xAIc41Q密码:xgg7这节课主要介绍什么叫混淆矩阵?混淆矩阵是由一个坐标系组成的,有x轴以及y轴,在x轴里面有0和1,在y
- 迈出数据分析与机器学习的第一步【人工智能工程师--AI转型必修课】
CSDN学习
CSDN学院【资讯】CSDN学院【优惠活动】CSDN学院【免费公开课】python数据分析人工智能机器学习浪潮
数据分析太火爆,怎奈机器学习太难懂!随着人工智能的浪潮卷卷袭来,机器学习已经越来越火爆啦。数据分析与机器学习岗位可谓供不应求,但是入门的门槛也是蛮高的,究竟了机器学习太难学还是咱们木有挑选到趁手的兵器呢?今天咱们的任务就是尝试用Python去开启一场数据分析和机器学习建模之旅,用最简单的方式带大家迈出机器学习的第一步!机器学习:数据分析很好理解,就是挖掘出来我们需要的有价值。机器学习:数据分析很好
- (二十)Seaborn知识学习7-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-05-141.绘制数据网格2.用FacetGrid子集数据3.用PairGridandpairplot()绘制成对的关系课程来源:python数据分析与机器学习实战-唐宇迪学习参考链接:1、Seaborn(sns)官方文档学习笔记(第六章绘制数据网格)2、Seaborn官方0.8.1版本引言:这节课我们讲Facetgrid,就是将很多子集进行展示,就可以用到这个函数.
- (三)算法推导与案例-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-04-281.现在说的很火的深度学习是什么?2.算法推倒如何开始?3.机器学习怎么动手去做?课程来源:python数据分析与机器学习实战-唐宇迪1.现在说的很火的深度学习是什么?机器学习包含深度学习,深度学习是机器学习算法的一个延伸,运用比较广泛,牛逼.在计算机视觉和自然语言处理中更胜一筹.它把神经网络进行了一个延伸.说白了就是机器学习有个算法就是神经网络,深度学习比
- python音乐推荐系统_《Python数据分析与机器学习实战-唐宇迪》读书笔记第14章--音乐推荐系统实战...
weixin_39555951
python音乐推荐系统
第14章推荐系统项目实战——打造音乐推荐系统上一章介绍了推荐系统的基本原理,本章的目标就要从零开始打造一个音乐推荐系统,包括音乐数据集预处理、基于相似度进行推荐以及基于矩阵分解进行推荐。14.1数据集清洗很多时候拿到手的数据集并不像想象中那么完美,基本都需要先把数据清洗一番才能使用,首先导入需要的Python工具包:1importpandasaspd2importnumpyasnp3importt
- 小白都能学会的Python基础 第二讲:Python基础知识
王宇韬
python基础python
1.华小智系列-Python基础(案例版)《Python基础》目录第二讲:Python基础知识1、变量、行与缩进2、数据类型:数字与字符串3、列表与字典4、运算符介绍与实践5.本章练习题6、课程相关资源第二讲:Python基础知识配套书籍:《Python金融大数据挖掘与分析全流程详解》第1章配套书籍:《Python大数据分析与机器学习商业案例实战》第1章下面就开始进行Python基础知识的正式教学
- 数据分析与机器学习介绍
郑某人_03a6
数据分析与机器学习课程概述数据分析数据采集数据清洗数据规约数据预处理可视化数据分析报告特征工程机器学习回归分类聚类深度学习神经网络(CNN)数学基础高等数学概率线性代数今天的课程内容jupyter的具体使用markdown的使用latex的使用python代码jupyter的使用jupyter的安装python环境的安装直接安装python(从官网下载)anaconda(大蟒蛇,python数据分
- Python数据分析与机器学习13-sklearn
只是甲
一.Sklearn工具包介绍scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy,SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。官网:https://scikit-learn.org/stable/index.html搜索相关语法:https://scikit-lear
- 【代码收藏】50 种常用的 matplotlib 可视化图
Sim1480
可视化python机器学习人工智能数据可视化
转自:机器之心数据分析与机器学习中常需要大量的可视化,因此才能直观了解模型背地里都干了些什么。而在可视化中,matplotlib算得上是最常用的工具,不论是对数据有个预先的整体了解,还是可视化预测效果,matplotlib都是不可缺失的模块。最近MachineLearningPlus的作者介绍了50种最常用的matplotlib可视化图表。介绍该表格主要介绍了7种不同的matplotlib可视化类
- 从“脱单”这件小事看数据分析与机器学习(上)
CDA经管之家
本文由公众号AIU人工智能(ID:ai_cda)出品,转载需授权故事背景Hello,大家好,我是一个在帝都漂了好几年的北漂,刚开始的时候还好,随着年纪的增长每次给家里打电话或者回家都像是经历一次渡劫,当然每每渡劫都不成功,被父上母上大人联手劈的外焦里嫩。如果有和我差不多年纪的单身哥们儿大概会懂这种感受.过程是这样的,最开始的催找女朋友---中期即使没有女朋友也要直接催婚—后期的连女朋友都没有就直接
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f