NLP--jieba(关键词提取(TFIDF/TextRand))

关键词提取–TFIDF

词频(Term Frequency,缩写为TF):出现次数最多的词
在这里插入图片描述
如果某个词比较少见,但是它在这篇文章中多次出现,
那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。
“逆文档频率”(IDF)
在这里插入图片描述
TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
import jieba
import jieba.analyse as analyse

lines=open('NBA.txt',encoding='utf-8').read()
print ("  ".join(analyse.extract_tags(lines, topK=20, withWeight=False, allowPOS=())))
韦少  杜兰特  全明星  全明星赛  MVP  威少  正赛  科尔  投篮  勇士 
球员  斯布鲁克  更衣柜  张卫平  三连庄  NBA  西部  指导  雷霆  明星队

关于TF-IDF 算法的关键词抽取补充

  • 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
    • 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
      • 自定义语料库示例见这里
      • 用法示例见这里
  • 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
    • 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
      • 自定义语料库示例见这里
      • 用法示例见这里
  • 关键词一并返回关键词权重值示例
    • 用法示例见这里

基于 TextRank 算法的关键词抽取

jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。
jieba.analyse.TextRank() 新建自定义 TextRank 实例
基本思想:

  • 将待抽取关键词的文本进行分词
  • 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
  • 计算图中节点的PageRank,注意是无向带权图
import jieba.analyse as analyse
lines = open('NBA.txt').read()
print "  ".join(analyse.textrank(lines, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')))
print "---------------------我是分割线----------------"
print "  ".join(analyse.textrank(lines, topK=20, withWeight=False, allowPOS=('ns', 'n')))

词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
  • 具体的词性对照表参见计算所汉语词性标记集
import jieba.posseg as pseg
words = pseg.cut("我爱自然语言处理")
for word, flag in words:
    print('%s %s' % (word, flag))

并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

用法:
jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式
实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。

import sys
import time
import jieba

jieba.enable_parallel()
content = open(u'西游记.txt',"r").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
print('并行分词速度为 %s bytes/second' % (len(content)/tm_cost))

jieba.disable_parallel()
content = open(u'西游记.txt',"r").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
print('非并行分词速度为 %s bytes/second' % (len(content)/tm_cost))

Tokenize:返回词语在原文的起止位置

注意,输入参数只接受 unicode

print "这是默认模式的tokenize"
result = jieba.tokenize(u'自然语言处理非常有用')
for tk in result:
    print("%s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

print "\n-----------我是神奇的分割线------------\n"

print "这是搜索模式的tokenize"
result = jieba.tokenize(u'自然语言处理非常有用', mode='search')
for tk in result:
    print("%s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

你可能感兴趣的:(NLP)