数学的分类

1算术

算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学--算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。

小学数学的大部分内容都属于算术的范畴。

数的概念、排列和组合应归入算术的内容。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

2初等代数

另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。在长 期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。也就是说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数

代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。 初等代数是更古老的算术的推广和发展。代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。

初等的代数运算基本内容

三种数——有理数、无理数、负数

三种式——整式、分式、根式

中心内容是方程——整式方程、分式方程、根式方程和方程组。

初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。

初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。

规则

五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;

两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;

三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。

初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。

3 高等代数

初等代数从最简单的一元一次方程开始,初等代数课本一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步,多项式代数

一般大学的数学专业学生学习高等代数,非数学专业的只学习线性代数

4分析数学

分析数学是一种较复杂的专业数学分支,涉及到微积分、复变函数等诸多内容。其中微积分学是微分学和积分学的总称。

由英国科学家 艾萨克·牛顿和德国数学家 戈特弗里德·威廉·莱布尼茨分别独立提出。20世纪,微积分在众多科学领域都有广泛的应用,特别是 计算机技术领域。
数学的分类_第1张图片 艾萨克·牛顿
数学大师欧拉正是运用分析的方法得出了e^x,sinx,cosx的内在联系,从而得到著名的欧拉公式,因此有了那个被称为“上帝创造的公式”:
初中的三角函数、不等式,高中数学中的 集合与函数的概念 、初等函数、 三角函数、不等式、导数、数列等,大学的非数学专业的高等数学、微积分、实变函数、复变函数 等都属于分析数学的范畴。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5 概率分析与数理统计
6 逻辑代数
7 离散数学


  











你可能感兴趣的:(数学的分类)