xgboost.XGBClassifier, xgboost.train()


1、xgboost.XGBClassifier()利用函数参数设置模型参数

    XGBClassifier()使用sklearn接口(推荐) 

  • XGBClassifier - 是xgboost的sklearn包。这个包允许我们像GBM一样使用Grid Search 和并行处理。
from sklearn.model_selection import train_test_split
from sklearn import metrics
from  sklearn.datasets  import  make_hastie_10_2
from xgboost.sklearn import XGBClassifier
X, y = make_hastie_10_2(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)##test_size测试集合所占比例
clf = XGBClassifier(
silent=0 ,#设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。
#nthread=4,# cpu 线程数 默认最大
learning_rate= 0.3, # 如同学习率
min_child_weight=1, 
# 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言
#,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。
#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
max_depth=6, # 构建树的深度,越大越容易过拟合
gamma=0,  # 树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。
subsample=1, # 随机采样训练样本 训练实例的子采样比
max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。
colsample_bytree=1, # 生成树时进行的列采样 
reg_lambda=1,  # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
#reg_alpha=0, # L1 正则项参数
#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重
#objective= 'multi:softmax', #多分类的问题 指定学习任务和相应的学习目标
#num_class=10, # 类别数,多分类与 multisoftmax 并用
n_estimators=100, #树的个数
seed=1000 #随机种子
#eval_metric= 'auc'
)
clf.fit(X_train,y_train,eval_metric='auc')
#设置验证集合 verbose=False不打印过程
clf.fit(X_train, y_train,eval_set=[(X_train, y_train), (X_val, y_val)],eval_metric='auc',verbose=False)
#获取验证集合结果
evals_result = clf.evals_result()
y_true, y_pred = y_test, clf.predict(X_test)
print"Accuracy : %.4g" % metrics.accuracy_score(y_true, y_pred)
#回归
#m_regress = xgb.XGBRegressor(n_estimators=1000,seed=0)



2、xgboost.train()利用param列表设置模型参数。

    原始的xgboost

  • xgb - 直接引用xgboost。 有“cv”函数。
def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):
if useTrainCV:
    xgb_param = alg.get_xgb_params()
    xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)
    cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,
        metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)
    alg.set_params(n_estimators=cvresult.shape[0])

#Fit the algorithm on the data
alg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc')

#Predict training set:
dtrain_predictions = alg.predict(dtrain[predictors])
dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]

#Print model report:
print "\nModel Report"
print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions)
print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob)

feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances')
plt.ylabel('Feature Importance Score')



你可能感兴趣的:(python,学习)