- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 动态图神经网络在社交网络演化分析中的应用
AI大模型应用实战
神经网络网络phpai
动态图神经网络在社交网络演化分析中的应用关键词:动态图神经网络、社交网络演化分析、图深度学习、时间序列分析、网络动力学摘要:本文深入探讨了动态图神经网络在社交网络演化分析中的应用。首先介绍了相关背景知识,包括目的范围、预期读者等。接着详细阐述了核心概念,如动态图神经网络的原理和架构,并通过示意图和流程图进行直观展示。对核心算法原理进行了深入讲解,结合Python代码给出具体操作步骤。同时,介绍了相
- AAAI2022国际顶会Workshop将会讨论些什么?
AINLPer
国际会议自然语言处理深度学习自然语言处理人工智能机器学习神经网络
来源:AINLPer微信公众号(每日论文干货分享!!)编辑:ShuYini校稿:ShuYini时间:2021-12-091、引言 目前关于AAAI2022的论文List还没有贴出来,但是目前的WorkShop的日程已经出来了,今天整理了一下给大家分享。本次AAAI2022研讨会计划于2022年2月28日至3月1日,共有39个。其中在技术研究领域涉及:强化学习、图神经网络、交互式机器学习、模型
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- 《A Gentle Introduction to Graph Neural Networks》
欧先生^_^
人工智能
这篇《AGentleIntroductiontoGraphNeuralNetworks》是一篇非常经典且对新手友好的图神经网络入门文章。我将为你深入浅出地解读它的核心思想、关键概念和重要性。这篇论文(更像是一篇博客文章或教程)的主要目的不是提出新的模型,而是系统性地、直观地解释GNN到底是什么,为什么需要它,以及它是如何工作的。我会将解读分为以下几个部分:核心动机:为什么我们需要GNN?核心思想:
- 图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用
zzc921
无线通信网络拓扑推理cnn人工智能神经网络无线通信网络拓扑推理WCNAGCNGAT
如果已经编写好了GCN的程序,改写GAT的程序是很方便的,torch_geometric.nn下既有一般图神经网络GCNConv包,也有图注意力神经网络GATConv包程序:#作者:zhouzhichao#创建时间:25年6月10日#内容:比较GAT和GCN在无线通信网络拓扑推理中的效果importwarningswarnings.simplefilter(action='ignore',cate
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 深度解析六大AI爬虫工具:crawl4ai、FireCrawl、Scrapegraph-ai、Jina、SearXNG、Tavily技术对比与实战指南
一、引言在AI大模型时代,数据获取与处理是构建智能应用的核心环节。传统爬虫面临技术门槛高、反爬应对复杂、动态内容处理困难等挑战,而AI驱动的爬虫工具通过融合大语言模型(LLM)、图神经网络、自动化解析等技术,正在重塑数据抓取范式。本文将深度测评6款主流AI爬虫工具,从技术原理、核心功能、实战场景到性能对比,为开发者提供一站式选型指南。二、六大AI爬虫工具深度解析1.FireCrawl:LLM就绪数
- 基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
人工智能深度学习llm神经网络
在企业数字化转型进程中,非结构化文本数据的处理与分析已成为核心技术挑战。传统自然语言处理方法在处理客户反馈、社交媒体内容和内部文档等复杂数据集时,往往难以有效捕获文本间的深层语义关联和结构化关系。大型概念模型(LargeConceptModels,LCMs)与图神经网络的融合为这一挑战提供了创新解决方案,通过构建基于LangGraph的混合符号-语义处理管道,实现了更精准的情感分析、实体识别和主题
- 论文研读 | 解耦动态时空图神经网络交通预测
时空大数据小组
深度学习交通物流时序数据库
DecoupledDynamicSpatial-TemporalGraphNeuralNetworkforTrafficForecasting本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享
- 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
追光者♂
百题千解计划(项目实战案例)STSGCN空间-时间同步图卷积模块STSGCM深度学习人工智能Traffic空间-时间异质性
注:仅学习使用~前情提要:【时空图神经网络&交通】相关模型1:STGCN|完全卷积结构,高效的图卷积近似,瓶颈策略|时间门控卷积层:GLU(GatedLinearUnit),一种特殊的非线性门控单元目录STSGCN-2020年1.1背景1.2模型1.2.1问题背景:现有模型存在的问题1.2.2模型1.3问答Q1:STSGCM补充:构造局部时空图的方式(LocalizedSpatial-Tempor
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 基于知识图谱的智能推荐系统实现
AGI大模型与大数据研究院
AI大模型应用开发实战知识图谱人工智能ai
基于知识图谱的智能推荐系统实现:从"猜你喜欢"到"懂你所想"的进化之旅关键词:知识图谱、智能推荐系统、实体关系、冷启动、可解释性、图神经网络、路径排序算法摘要:你是否好奇过,为什么电商平台总能精准推荐你想买的商品?为什么视频软件总能猜到你喜欢的剧情?传统推荐系统依赖用户行为数据,但面对新用户/新商品时会"抓瞎",且无法解释"为什么推荐这个"。本文将带你走进"基于知识图谱的智能推荐系统",用超市导购
- 探讨推荐系统中的上下文关联性的建模和建模方法——从信息处理的角度
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介在很多推荐系统中,如电影推荐、购物推荐等,根据用户的行为记录、设备信息、上下文环境等进行推荐是很重要的。在复杂多样的推荐场景下,如何同时考虑用户对不同时间段的兴趣以及上下文环境之间的关联性?如何捕获到用户当前的多维信息,而不仅仅局限于单一的主题或品牌?此次论文通过结合时间因素、图神经网络(GraphNeuralNetwork)及上下文关联性,提出一种基于上下文环
- 十大机器学习算法:理论与实战
Android洋芋
人工智能机器学习算法深度学习实战Kubernetes部署AI模型优化图神经网络决策树分析
简介机器学习技术持续演进,算法应用场景不断扩展。在众多算法中,有十种算法因其广泛的适用性和强大的表现力被公认为机器学习领域的核心力量。本文将从零开始,系统讲解这些算法的数学原理、应用场景和企业级开发实战,帮助初学者和工程师快速掌握这些算法,并能够将其应用于实际项目中。关键词:机器学习算法、集成学习、图神经网络、逻辑回归、决策树、支持向量机、KNN、k-means、PCA、强化学习一、集成学习算法(
- 基于连接感知的实时困倦分类图神经网络
是Dream呀
计算机视觉神经网络分类神经网络数据挖掘
疲劳驾驶是导致交通事故的主要原因之一。脑电图(EEG)是一种直接从大脑活动中检测睡意的方法,已广泛用于实时检测驾驶员的睡意。最近的研究表明,使用基于脑电图数据构建的大脑连接图来预测困倦状态的巨大潜力。然而,传统的脑连接网络与下游预测任务无关。本文提出了一种使用自注意机制的连接感知图神经网络(CAGNN),该网络可以通过端到端训练生成与任务相关的连接网络。研究方法研究方法基于实时监测驾驶员的脑电活动
- 【人工智能】图神经网络(GNN)的推理方法
meisongqing
人工智能神经网络
图神经网络(GNN)的推理方法是指利用训练好的模型对图结构数据(如节点、边或整个图)进行预测或决策的过程。其核心在于如何通过图的拓扑结构和节点/边特征,传播和聚合信息以实现目标任务的推理。以下是GNN的主要推理方法分类及其关键技术:1.按推理任务分类(1)节点级推理(Node-LevelInference)任务:预测单个节点的属性(如节点分类、回归)。方法:消息传递(MessagePassing)
- 图神经网络实战(3)——基于DeepWalk创建节点表示
盼小辉丶
图神经网络从入门到项目实战神经网络人工智能深度学习
图神经网络实战(3)——基于DeepWalk创建节点表示0.前言1.Word2Vec1.1CBOW与skip-gram1.2构建skip-gram模型1.3skip-gram模型1.4实现Word2Vec模型2.DeepWalk和随机行走3.实现DeepWalk小结系列链接0.前言DeepWalk是机器学习(machinelearning,ML)技术在图数据中的成功应用之一,其引入了嵌入等重要概念
- Dijkstra算法对比图神经网络(GNN)
爱吃青菜的大力水手
算法神经网络人工智能自动化调度算法机器学习
什么是AI模型?AI模型(人工智能模型)是一类模仿人类智能行为的数学模型或算法。它们通过从大量数据中学习,识别模式、做出预测或决策。常见的AI模型包括机器学习模型(如决策树、神经网络、支持向量机)和深度学习模型(如卷积神经网络CNN、循环神经网络RNN)。简单来说,AI模型就像一个“智能大脑”,通过训练数据来掌握某种技能,比如分类、预测或规划。AI模型如何使用到机器人调度算法中?机器人调度是指规划
- 从零到前沿:2025年人工智能系统性学习路径与最新技术融合指南
小李独爱秋
人工智能人工智能学习
一、构建人工智能认知框架(一)基础学科筑基数学核心能力线性代数:掌握矩阵运算(张量分解在推荐系统的应用)与特征值分析(PCA降维原理)概率统计:贝叶斯网络在医疗诊断中的应用,蒙特卡洛方法在强化学习的采样策略优化理论:2025年主流的元学习(Meta-Learning)框架中的二阶优化算法发展计算机科学基础数据结构:图神经网络(GNN)中的邻接矩阵存储优化操作系统:分布式训练中的GPU资源调度策略(
- 论文阅读-Quantum Annealing and Graph Neural Networks for Solving TSP with QUBO
酒饮微醉-
论文阅读
Q:这篇论文试图解决什么问题?A:这篇论文探讨了如何应用量子退火(QuantumAnnealing,QA)算法和图神经网络(GraphNeuralNetworks,GNNs)解决旅行商问题(TravellingSalesmanProblem,TSP)。TSP是一个经典的组合优化问题,它要求在给定的加权图中找到一条经过所有顶点恰好一次并返回起始点的最短路径。这个问题在实际应用中非常广泛,如物流、电子
- 基于图神经网络的甘草-甘遂-代谢酶三元互作网络建模与解析
百态老人
神经网络人工智能深度学习
一、问题定义与技术挑战在中药"十八反"配伍禁忌研究中,"甘草-甘遂"组合的毒性机制涉及多酶协同代谢效应与非线性网络互作。传统方法面临以下挑战:多尺度互作复杂性:甘草酸、甘遂萜酯等活性成分通过CYP2D6、CYP3A4等代谢酶网络产生协同/拮抗效应动态剂量依赖:毒性效应随配伍比例(如1:4至4:1)呈现非线性变化(图1)代谢异质性:患者基因型(如CYP2D6*10突变)显著影响毒性阈值图神经网络(G
- 图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)
盼小辉丶
图神经网络从入门到项目实战GNN图神经网络深度学习
图神经网络实战(12)——图同构网络0.前言1.图同构网络原理2.构建GIN模型执行图分类2.1图分类任务2.2PROTEINS数据集分析2.3构建GIN实现图分类2.4GCN与GIN性能差异分析3.提升模型性能小结系列链接0.前言Weisfeiler-Leman(WL)测试提供了一个理解图神经网络(GraphNeuralNetworks,GNN)表达能力的框架,利用该框架我们比较了不同的GNN层
- 直播带货AI电商系统超级进化:从实时推荐到虚拟主播的全栈实现(附完整代码)
夏末之花
人工智能
引言:直播电商3.0时代2023年直播电商市场规模突破4.9万亿,传统直播间面临三大痛点:用户停留时长B{AI网关}B-->C[实时推荐引擎]B-->D[虚拟主播系统]B-->E[智能场控系统]C-->F[图神经网络]D-->G[NeRF渲染]E-->H[强化学习]二、核心技术实现1.实时推荐系统(核心代码)#基于时间衰减的图神经网络推荐classTemporalGNN(nn.Module):de
- Geometric Vector Perceptron (GVP) 开源项目教程
梅昆焕Talia
GeometricVectorPerceptron(GVP)开源项目教程gvp项目地址:https://gitcode.com/gh_mirrors/gvp/gvp1.项目介绍1.1项目概述GeometricVectorPerceptron(GVP)是一个用于从生物分子结构中学习的旋转等变图神经网络(GNN)。该项目由斯坦福大学的Dror实验室开发,旨在通过几何向量感知器来处理生物分子结构数据,特
- 【GNN4Medical】GNN在医疗领域发展和应用
静静喜欢大白
医疗影像医学影像GNN人工智能癌症
目录1、引入2、方法综述2021SensorsGraph-BasedDeepLearningforMedicalDiagnosisandAnalysis:Past,PresentandFuture图神经网络在智能诊断与预测中应用的指南和测试基准2022MechanicalSystemsandSignalProcessingTheemerginggraphneuralnetworksforintel
- 图神经网络全解析:从基础概念到前沿应用
程序员小嬛
人工智能神经网络神经网络人工智能深度学习
近年来,在从社交网络到分子生物学等众多领域中,数据以图形式表示的情况愈发常见。图神经网络(GraphNeuralNetwork,GNN)是专门针对图结构数据研发的,若想充分释放图表示的潜能,深入探究图神经网络就成为关键。在本部分内容里,我们将详细剖析图神经网络的基础概念,并弄清楚它们为何能成为现代数据分析和机器学习领域的关键工具。下面,我们将围绕这些要点,全面认识GNN。首先,我们会剖析图作为数据
- 基于图神经网络(GNN)的机器人路径规划与环境理解
学习ing1
神经网络机器人人工智能
1.图神经网络(GNN)基础1.1GNN定义与结构图神经网络(GNN)是一种用于处理图结构数据的深度学习模型。在机器人路径规划与环境理解中,GNN能够有效处理环境中的拓扑结构信息。GNN的基本结构由节点(如机器人、障碍物、目标点等)和边(表示节点之间的关系)组成。每个节点都有自己的特征向量,边则表示节点之间的连接关系。例如,在一个室内环境中,机器人可以作为中心节点,周围的墙壁、家具等作为其他节点,
- 大模型驱动的人造板胶水仿真实验:从分子模拟到工艺优化
davysiao
AI应用随记人工智能机器学习算法
一、引言人造板胶水的性能直接影响板材的强度、耐水性和环保性。传统实验方法需反复试错,成本高且周期长。本文提出一种基于大模型的仿真实验框架,结合分子动力学模拟、图神经网络(GNN)和化学大语言模型(如ChemGPT),实现胶水配方设计、反应过程模拟和性能预测的全流程自动化。以PMDI(多亚甲基多苯基异氰酸酯)胶水为例,展示如何通过大模型加速研发进程。二、技术框架与核心模块1.分子动力学模拟(MD)工
- 2024 信息安全专业毕业设计(论文)选题题目推荐合集 选题指导
面试题开源
2024年程序员学习课程设计
基于机器学习的网络入侵检测与防御系统基于对抗性机器学习的网络入侵检测系统支持零知识证明的交易数据隐私保护方案基于图神经网络的门级硬件木马检测系统基于隐私风险评估的脱敏算法自适应系统基于区块链的电商诚信问答关键技术研究基于文本的网络安全事件检测系统与探索基于区块链的医疗数据分类加密共享系统用于缝纫设备远程维护的系统及加密系统基于联邦学习的分布式虚假新闻检测系统基于人脸识别技术的实验室身份验证系统基于
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文