SKlearn学习笔记——决策树

SKlearn学习笔记——决策树

  • 1. 概述
      • 1.1 决策树是如何工作的
      • 1.2 sklearn中的决策树
  • 2. DecisionTreeClassifier
      • 2.1 重要参数
      • 2.2 重要属性和接口

前言: scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。

以下内容整理自 菜菜的机器学习课堂.

sklearn官网链接: 点击这里.

1. 概述

1.1 决策树是如何工作的

决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。

决策树算法的核心是要解决两个问题:

  • 如何从数据表中找出最佳节点和最佳分枝?
  • 如何让决策树停止生长,防止过拟合?

1.2 sklearn中的决策树

  • 模块sklearn.tree
    sklearn中决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:
tree.DecisionTreeClassifier 分类树
tree.DecisionTreeRegressor 回归树
tree.export_ graphviz 将生成的决策树导出为DOT格式,画图专用
tree. ExtraTreeCassifier 高随机版本的分类树
tree. Extra TreeRegressor 高随机版本的回归树

我们主要讲解分类树和回归树,并用图像呈现给大家。

  • sklearn的基本建模流程
    在那之前,我们先来了解一下sklearn建模的基本流程。
    SKlearn学习笔记——决策树_第1张图片
    在这个流程下,分类树对应的代码是:
 from sklearn import tree           #导入需要的模块
 
 clf = tree.DecisionTreeClassifier()   #实例化
 clf = clf.fit(X_train,y_train)        #用训练集数据训练模型
 result = clf.score(X_test,y_test)     #导入测试集,从接口中调用需要的信息

2. DecisionTreeClassifier

原型:

class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,class_weight=None, presort=False)

2.1 重要参数

2.1.1 criterion
为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:

  • 输入”entropy“,使用信息熵(Entropy)
  • 输入”gini“,使用基尼系数(Gini Impurity)

SKlearn学习笔记——决策树_第2张图片
其中 t 代表给定的节点,i 代表标签的任意分类, p(i|t) 代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。
比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。当然,这不是绝对的。

参数 criterion
如何影响模型? 确定不纯度的计算方法,帮忙找出最佳节点和最佳分枝,不纯度越低,决策树对训练集的拟合越好
可能的输入有哪些? 不填默认基尼系数,填写gini使用基尼系数,填写entropy使用信息增益
怎样选取参数? 1. 通常就使用基尼系数 2. 数据维度很大,噪音很大时使用基尼系数 3.维度低,数据比较清晰的时候,信息熵和基尼系数没区别 4.当决策树的拟合程度不够的时候,使用信息熵 5. 两个都试试,不好就换另外一个

到这里,决策树的基本流程其实可以简单概括如下:
在这里插入图片描述
直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。

  • 建立一棵树
  1. 导入需要的算法库和模块
from sklearn import tree
from sklearn.datasets import load_wine    #导入数据集
from sklearn.model_selection import train_test_split
  1. 探索数据
wine = load_wine()
wine.data.shape
wine.target
#如果wine是一张表,应该长这样:
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
wine.feature_names
wine.target_names
  1. 分训练集和测试集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)  #注意Xtrain, Xtest, Ytrain, Ytest顺序不能随意
Xtrain.shape
Xtest.shape
  1. 建立模型
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest) #返回预测的准确度
  1. 画出一棵树吧
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
import graphviz
dot_data = tree.export_graphviz(clf,feature_names=feature_name,class_names=["琴酒","雪莉","贝尔摩德"],filled=True,rounded=True)
graph = graphviz.Source(dot_data)
graph

画出的图:
SKlearn学习笔记——决策树_第3张图片
6. 探索决策树

#特征重要性 
clf.feature_importances_
[*zip(feature_name,clf.feature_importances_)]

输出:各个特征的重要性
在这里插入图片描述
SKlearn学习笔记——决策树_第4张图片
2.1.2 random_state & splitter
random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据随机性几乎不会显现。
splitter也是用来控制决策树中的随机选项的,有两种输入值,输入 best ,决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入random,决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合。

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30,splitter="random")
clf = clf.fit(Xtrain,Ytrain)
score = clf.score(Xtest,Ytest)

SKlearn学习笔记——决策树_第5张图片
2.1.3 剪枝参数
在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对未知数据的拟合程度不足。

#我们的树对训练集的拟合程度如何?
score_train = clf.score(Xtrain, Ytrain)
score_train

为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化决策树算法的核心。 sklearn为我们提供了不同的剪枝策略:

  • max_depth
    限制树的最大深度,超过设定深度的树枝全部剪掉。
    这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所以限制树深度能够有效地限制过拟合。在集成算法中也非常实用。实际使用时,建议从=3开始尝试,看看拟合的效果再决定是否增加设定深度。
  • min_samples_leaf & min_samples_split
    min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。
    一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。如果叶节点中含有的样本量变化很大,建议输入浮点数作为样本量的百分比来使用。同时,这个参数可以保证每个叶子的最小尺寸,可以在回归问题中避免低方差,过拟合的叶子节点出现。对于类别不多的分类问题,=1通常就是最佳选择。
    min_samples_split 限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生。
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30,splitter="random" ,max_depth=3,min_samples_leaf=10,min_samples_split=10)
clf = clf.fit(Xtrain, Ytrain)
dot_data = tree.export_graphviz(clf,feature_names= feature_name,class_names=["琴酒","雪莉","贝尔摩德"],filled=True,rounded=True)
graph = graphviz.Source(dot_data)
graph  

SKlearn学习笔记——决策树_第6张图片

  • max_features & min_impurity_decrease
    一般max_depth使用,用作树的”精修“
    max_features 限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。
    min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分枝不会发生。这是在0.19版本种更新的功能,在0.19版本之前时使用min_impurity_split。
  • 确认最优的剪枝参数
    那具体怎么来确定每个参数填写什么值呢?这时候,我们就要使用确定超参数的曲线来进行判断了,继续使用我们已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲线,它是用来衡量不同超参数取值下模型的表现的线。在我们建好的决策树里,我们的模型度量指标就是score。
import matplotlib.pyplot as plt
test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(max_depth=i+1,criterion="entropy",random_state=30,splitter="random")
    clf = clf.fit(Xtrain, Ytrain)
    score = clf.score(Xtest,Ytest)
    test.append(score)
plt.plot(range(1,11),test,color="red",label="max_depth")
plt.legend()
plt.show()

SKlearn学习笔记——决策树_第7张图片
2.1.4 目标权重参数

  • class_weight & min_weight_fraction_leaf
    完成样本标签平衡的参数。样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例。比如说,在银行要判断“一个办了信用卡的人是否会违约”,就是是vs否(1%:99%)的比例。这种分类状况下,即便模型什么也不做,全把结果预测成“否”,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中的所有标签相同的权重。
    有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_weight_fraction_leaf这个基于权重的剪枝参数来使用。另请注意,基于权重的剪枝参数(例如min_weight_fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf)更少偏向主导类。如果样本是加权的,则使用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。

2.2 重要属性和接口

属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是feature_importances_,能够查看各个特征对模型的重要性。

sklearn中许多算法的接口都是相似的,比如说我们之前已经用到的fit和score,几乎对每个算法都可以使用。除了这两个接口之外,决策树最常用的接口还有apply和predict。apply中输入测试集返回每个测试样本所在的叶子节点的索引,predict输入测试集返回每个测试样本的标签。返回的内容一目了然并且非常容易,大家感兴趣可以自己下去试试看。

#app1y返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)

#predict返回每个测试样本的分类/回归结果
clf.predict(Xtest)

至此,我们已经学完了分类树DecisionTreeClassifier和用决策树绘图(export_graphviz)的所有基础。我们讲解了决策树的基本流程,分类树的七个参数,一个属性,四个接口,以及绘图所用的代码。

七个参数: Criterion,两个随机性相关的参数(random_state,splitter),四个剪枝参数(max_depth, ,min_sample_leaf,max_feature,min_impurity_decrease)

一个属性: feature_ importances_

四个接口: fit、score、 apply、 predict

你可能感兴趣的:(机器学习,sklearn,机器学习)