深入分析java lock锁的实现原理(看这篇就够了)

我们知道Java中实现锁的方式有synchronized,lock两种方式,synchronized是基于JVM层面实现。从Java1.5之后,我们可以通过API的方式实现锁了,即lock锁。下面我们深入了解lock是如何实现锁机制的。这里我们以ReentrantLock为例
首先我们看一下类的结构
深入分析java lock锁的实现原理(看这篇就够了)_第1张图片
我们再看看Lock接口中定义了那些方法

void lock();

void lockInterruptibly() throws InterruptedException;

boolean tryLock();

boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

void unlock();

Condition newCondition();

OK,我们获取锁,释放锁的方法都在这个接口类中定义好了。那么ReentrantLock只需要实现这几个方法就行了。ReentrantLock提供了两种构造方法:

	//我们使用默认无参构造方法用的是非公平锁的方式。
    public ReentrantLock() {
        sync = new NonfairSync();
    }
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

sync成员变量是ReentrantLock中定义的一个抽象的静态内部类

	abstract static class Sync extends AbstractQueuedSynchronizer {
		abstract void lock();
		
		final boolean nonfairTryAcquire(int acquires) {
	            final Thread current = Thread.currentThread();
	            int c = getState();
	            if (c == 0) {
	                if (compareAndSetState(0, acquires)) {
	                    setExclusiveOwnerThread(current);
	                    return true;
	                }
	            }
	            else if (current == getExclusiveOwnerThread()) {
	                int nextc = c + acquires;
	                if (nextc < 0) // overflow
	                    throw new Error("Maximum lock count exceeded");
	                setState(nextc);
	                return true;
	            }
	            return false;
	        }
	
	        protected final boolean tryRelease(int releases) {
	            int c = getState() - releases;
	            if (Thread.currentThread() != getExclusiveOwnerThread())
	                throw new IllegalMonitorStateException();
	            boolean free = false;
	            if (c == 0) {
	                free = true;
	                setExclusiveOwnerThread(null);
	            }
	            setState(c);
	            return free;
	        }
	        
	        ...
	}
	
	Sync有两个实现类NonfairSync(非公平锁),FairSync(公平锁):

	 /**
	  * Sync object for non-fair locks
	  */
	static final class NonfairSync extends Sync {
		   private static final long serialVersionUID = 7316153563782823691L;
		
		   /**
		    * Performs lock.  Try immediate barge, backing up to normal
		    * acquire on failure.
		    */
		   final void lock() {
		       if (compareAndSetState(0, 1))
		           setExclusiveOwnerThread(Thread.currentThread());
		       else
		           acquire(1);
		   }
		
		   protected final boolean tryAcquire(int acquires) {
		       return nonfairTryAcquire(acquires);
		   }
	}
	
	/**
	 * Sync object for fair locks
	 */
	static final class FairSync extends Sync {
	     private static final long serialVersionUID = -3000897897090466540L;
	
	      final void lock() {
	          acquire(1);
	      }
	
	      /**
	       * Fair version of tryAcquire.  Don't grant access unless
	       * recursive call or no waiters or is first.
	       */
	      protected final boolean tryAcquire(int acquires) {
	          final Thread current = Thread.currentThread();
	          int c = getState();
	          if (c == 0) {
	              if (!hasQueuedPredecessors() &&
	                  compareAndSetState(0, acquires)) {
	                  setExclusiveOwnerThread(current);
	                  return true;
	              }
	          }
	          else if (current == getExclusiveOwnerThread()) {
	              int nextc = c + acquires;
	              if (nextc < 0)
	                  throw new Error("Maximum lock count exceeded");
	              setState(nextc);
	              return true;
	          }
	          return false;
	      }
	 }

ReentrantLock实现lock()的方法:

	public void lock() {
	      sync.lock();
	}

首先我们先分析一下非公平模式下,锁的大体流程:
深入分析java lock锁的实现原理(看这篇就够了)_第2张图片
接下来,我们用源代码一步步分许上面的流程:
假设我们现在有A,B两个线程,同时调用ReentrantLock的lock方法

	final void lock() {
         if (compareAndSetState(0, 1))
             setExclusiveOwnerThread(Thread.currentThread());
         else
             acquire(1);
     }

假设A线程首先执行 if (compareAndSetState(0, 1))

	protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

stateOffset即state在内存中的偏移量,这时A线程将state状态成功的从0改为1,接着执行方法

	protected final void setExclusiveOwnerThread(Thread thread) {
       exclusiveOwnerThread = thread;
   }

将线程A设置成独享的线程。第一次获取锁的方式很简单,没什么好说的,总结下来就是通过CAS比较AQS中state,如果是0就更新值为1同时将当前线程赋值给exclusiveOwnerThread 结束。
接着线程B执行lock,首先if (compareAndSetState(0, 1))这时state的值为1,更新不成功走到else逻辑中执行acquire(1);

	public final void acquire(int arg) {
       if (!tryAcquire(arg) &&
           acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
           selfInterrupt();
   	}

acquire(1)执行if条件中线程B不死心,想再尝试获取一下锁,于是执行了

   protected final boolean tryAcquire(int acquires) {
       return nonfairTryAcquire(acquires);
   }
   
   final boolean nonfairTryAcquire(int acquires) {
           final Thread current = Thread.currentThread();
           int c = getState();
           if (c == 0) {
               if (compareAndSetState(0, acquires)) {
                   setExclusiveOwnerThread(current);
                   return true;
               }
           }
           else if (current == getExclusiveOwnerThread()) {
               int nextc = c + acquires;
               if (nextc < 0) // overflow
                   throw new Error("Maximum lock count exceeded");
               setState(nextc);
               return true;
           }
           return false;
       }

如果在执行这个方法前线程A执行完成释放了锁,这时B就能成功获取lock,如果A没有释放锁,返回false,那么tryAcquire失败,执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
这里有两个方法,我们先分析addWaiter()

	private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

第一步先创建了一个Node,我们先看看这个Node的数据结构有啥东西:

static final class Node {
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;
         volatile int waitStatus;
         volatile Node prev;
         volatile Node next;
         volatile Thread thread;
         Node nextWaiter;
 }

这是个双向链表的数据结构,我们在AQS类中的成员变量中也看到了,头节点与尾节点

    private transient volatile Node head;
    private transient volatile Node tail;

那么再来看addWaiter方法好理解了,首先将我们线程B封装成一个Node对象,此时tail节点为null,所以执行enq(node)方法

	private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

这个方法里有个自旋逻辑,第一次自旋,如果tail==null,先构建一个新的node, 让tail和head节点都指向该node对象
深入分析java lock锁的实现原理(看这篇就够了)_第3张图片
第二次自旋tail != null, 将线程B的node节点的前置节点设置成head(tail)节点,然后进行CAS操作将tail节点设置成线程B的node节点
深入分析java lock锁的实现原理(看这篇就够了)_第4张图片
所以一句话总结enq方法就是完成双向链表的初始化的,并将节点添加到尾部。那么如果这时第三个线程来执行
addWaiter方法,tail就不为null, 执行代码块

	Node pred = tail;
    if (pred != null) {
         node.prev = pred;
         if (compareAndSetTail(pred, node)) {
             pred.next = node;
             return node;
         }
     }

这段代码就是将node添加到链表尾部,并将tail指向新的node。
深入分析java lock锁的实现原理(看这篇就够了)_第5张图片
接着下一步执行:

	final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

又是一个自旋,好吧,一步步分析。第一次自旋获取node的前置节点p,如果节点p是head节点,线程B想:“呀~我是第一个节点,不行我要再尝试获取一下锁,万一人家已经释放锁了,我就不用park了”,tryAcquire返回true,成功获取锁,这时设置head

	private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }

如果获取失败,那咋办呢,线程不能一直占着CPU资源不干事呀?没办法那就挂起线程,把CPU释放了,安静的排队去。。。

	private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            return true;
        if (ws > 0) {
        //循环将状态>0(CANCELLED)的前置节点从链表中移除
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
        	线程B的pre节点为head,head的waitStatus为0所以走这段逻辑,做CAS操作将head的waitStatus设置为SIGNAL的值-1
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

第一次自旋调用shouldParkAfterFailedAcquire返回false,接着开始第二次自旋执行这时head的waitStatus== Node.SIGNAL直接返回true。这时才挂起B线程

	private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

至此,线程B终于安静的躺在链表中,等待线程A执行完成释放锁后,将它给唤醒!
那么,线程A执行完成如何释放锁资源的呢,别着急,接着往下探。

	public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
 	protected final boolean tryRelease(int releases) {
       int c = getState() - releases;
       if (Thread.currentThread() != getExclusiveOwnerThread())
           throw new IllegalMonitorStateException();
       boolean free = false;
       if (c == 0) {
           free = true;
           setExclusiveOwnerThread(null);
       }
       setState(c);
       return free;
   }

相信现在大家看到这里,对上面的代码,应该没有什么疑惑了把,如果还有,那就将上面的分析再看一遍?。重点看一下唤醒线程的方法

	 private void unparkSuccessor(Node node) {
       //head的waitStatus为-1,现将-1设置为0
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
        //获取线程B的node节点
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            //从后往前找waitStatus小于0的节点
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);//唤起线程
    }

好了,到这里已经带着大家把Lock的整个锁的获取与释放全部分析了一遍,希望对家有帮助。如果有什么不对的地方,欢迎指正。
若要转载,请表明出处!

你可能感兴趣的:(深入分析java lock锁的实现原理(看这篇就够了))