【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践

当前,大数据作为新一代信息技术的关键,逐渐成为新一轮产业革命的核心。制造业迈入了大数据时代,2012年,GE公司率先明确了“工业大数据”的概念。


在制造业,产品的全生命周期从市场规划、设计、制造、销售、维护等过程都会产生大量的结构化和非结构化数据,形成了制造业大数据,而这些数据符合大数据的三“V”的特征:规模性、多样性以及高速性。除此以外,制造业大数据还具多源异构、多尺度、不确定、高噪声等特征。因此,研究和应用制造大数据更具有挑战性。主要体现在制造大数据的存储、管理、分析和展示方面。如何充分挖掘工厂中数据的价值,通过对制造大数据进行分析,提升数字化工厂运行效率,已成为制约数字化工厂向智慧工厂发展的瓶颈!

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第1张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第2张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第3张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第4张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第5张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第6张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第7张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第8张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第9张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第10张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第11张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第12张图片


【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第13张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第14张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第15张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第16张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第17张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第18张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第19张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第20张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第21张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第22张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第23张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第24张图片



【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第25张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第26张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第27张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第28张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第29张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第30张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第31张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第32张图片


附:部分部分现场演讲实录


然而,大数据给我们带来的思考:在制造业能用吗?解决什么问题?制造业大数据到底在哪些领域可以发挥它的作用?


首先,能用否?大数据已经成为解决现实世界问题的方法。要解决现实世界的问题,第一种方法就是科学实验,通过实验的方法来发现现实世界的一些规律和解决和问题;第二种就是通过理论分析和推导方法;第三种就是科学计算,模拟仿真成为第三种解决问题的范式;数据科学成为第四种解决问题的范式,这个就是由美国图灵奖的获得者,他出了一本书《第四种范式》,目前现在国外数据科学是一门非常热门的学科,它是一门综合交叉的学科。


大数据方法带来了思维上的变化,主要是从三个方面来看的:

从因果到关联,更强调事物之间的相关性而非因果性。

从局部到全体,采用全体数据进行分析,而不是随机样本。

从精确到混杂,通过数据保证解的优异性,不再一味追求精确的算法。

既然大数据已经成为解决问题的方法,那能用它。


因此,从数字化工厂向智能化工厂转化的过程中面对着海量的数据,需要寻找它们相互之间的联系和隐藏规律,实现透明化的目标。


最后,在哪里用?大数据它给制造业提供的是一种全方位的全程式的一种服务,在产品全生命周期阶段,从设计到制造、从使用到维护、直到维修阶段,产生的正向数据以及逆向数据,这些数据都能全方位的使用。


在产品的设计中,传统的设计师,基于经验灵感和经验,揣度消费者的需求喜好,设计产品。在大数据时代,设计师通过对用户行为和需求大数据进行分析,精准量化客户需求,指导设计过程。


在制造阶段,大数据技术可以帮助实现生产过程异常发现、产品质量和生产调度优化等方面。以生产异常发现为例,传统的基于降维手段的异常发现方法,容易破坏信息完整性,不利于设备异常的发现。在大数据模式下,基于制造数据的分析对关键参数进行提取,然后通过聚类分析手段发现设备异常模式,在此基础上对设备控制优化。大数据也能帮助提高产品的质量控制,大家来自制造业可能知道SPC控制的是整个过程的单个参数,但是单个参数在正常范围,为什么还会出现一些质量问题?可能每个参数均处于临界状态,综合产生会产生一些质量问题,所以在这个过程中,传统就是数据的筛选、参数分析,这个过程介入了人工的分析来进行质量的预测,数据筛选过程淘汰了许多有效的数据资源,参数分析过程经常存在人工经验判断,使得预测模型对整个产品加工过程信息的描述残缺不全,不能发现产品质量问题的深层次原因(如误差累积)。因此在大数据模式下,根据产品的加工工艺过程,对产品质量相关数据按层次进行组织,利用多隐藏层的神经网络深度学习加工过程中产品质量数据的相互作用机理,从而对产品质量问题进行全面、深层次描述。大数据能提升大规模生产调度的全局性能,大家知道为什么我们企业生产调度一直会出现问题,我们做的计划好好地赶不上变化。因为所做的计划,是在一个理想状态下考虑约束做的计划。我自己做生产优化调度做了20多年,一直在寻找一种最优的解决方案,研究智能方法,例如:遗传算法、蚂蚁算法等。但随着工艺的复杂、环境的复杂、工艺的规模,整个问题规模越来越大的时候,它已经是一个很难解决的问题。传统的智能调度方法难以求解大规模的调度问题,基于规则和瓶颈的方法在大规模问题中又很难得到全局优化解;大数据带来了新思路,他采用全局的数据之间的关联关系,从而形成全局的调度方案,能够解决大规模生产中的全局调度问题。


大数据能为产品的运营维护服务,很典型的案例就是GE的案例,建立一个平台,为航空发动机的监控、运行监测、故障诊断提供一个全方位的服务。在产品的运行和维护过程中,大数据模式一改传统方法被动的运维模式,通过采集和分析智能设备的传感器数据,进行大数据分析,主动进行产品的安全监测、故障诊断,优化产品的运行过程。大数据应用过程中需要的是什么呢,首先需要的是能够采集到数据,也就是需要产品是一个智能化的产品,所以在智能制造中,首先要有智能化的产品,安装传感器,能够实时的传递数据,这为后面的运行、维护服务提供了依据。


大数据不只是关于数据,而是采用传统及新的分析方法来分析所有数据。针对大数据分析的结果采取行动来提升业务才是最重要。随着大数据技术的不断地发展,国内外已对大数据在制造领域中的应用进行了一些开拓性的研究,代表性的有GE工业互联网解决方案、Smart Factory计划,SAP HANA平台和Invensys数据分析平台,并已在农夫山泉、百事饮料等公司应用。三一重工利用大数据技术通过对地理位置数据的关联分析发现泵车主油缸故障与沿海地区杭深高铁建设的强相关性,确定了沿海地区的盐雾环境和水质是导致油缸密封体腐蚀的主要原因。日本小松公司通过对挖掘机安装传感器与GPS定位系统,从而实时监控车辆运行情况,并通过大数据分析,对未来挖掘机市场的需求进行预测从而调整生产、对用户的使用习惯进行分析与建议从而降低油耗。


以上的一些工业案例成为制造业大数据的先驱,然后,目前绝大多数制造业大数据的应用没能形成系统化的思路和方案,缺乏理论体系的支撑。针对国内在制造业大数据应用基础研究上的空白,我团队2014年申请了国家自然科学基金重点项目“大数据驱动的智能车间运行分析与决策方法研究”, 并得到了资助。目前,围绕车间制造大数据之间的耦合作用机理、车间性能的演化规律、车间运行过程的调控机制三个基础科学问题进行科学研究,来探索我们的大数据在我们的智能制造车间的运行情况。解决问题的思路是是一切都在用数据来说话,利用大数据来解决工程问题的科学研究思路是:一切数据说话。首先数据化:将设备状态参数、计划执行情况等运行参数,以及质量、交货期等性能指标数据化;然后分析这些数据之间的关联关系,用数据挖掘的方法预测交货准时率、产品合格率等车间性能的演化规律;从演化规律中,发现质量指标中某数据异常,找到影响该异常数据的关键参数,最后对关键数据进行控制,保证交货期和产品质量。为了实现大数据应用,我们提出了大数据驱动的智慧工厂,它是生产车间、物联网、云端、移动互联的有机融合。利用物联网技术,使得车间生产过程、物流及之后的销售、服务过程具备感知能力;全生命周期内产生的各种制造数据保存到云端;借助大数据处理与分析技术,依托云计算平台,帮助分析数字工厂运行过程,提供决策支持,并通过移动互联方式展现。目前我们在晶圆制造的车间和发动机装配车间,开展了一系列的工作。


最后,我认为:实现以数据感知、数据处理分析、制造过程决策与支持、数据可视化技术为核心的智慧工厂已经成为趋势,大数据产业链及技术体系逐渐成熟,大数据必将加速数字工厂向智慧工厂的转型。




产品质量大数据系统

航天大道科技

产品特点:

  • 高安全、高可靠:

遵循航天严格的质量规范进行研制,系统具有高可靠特点;

核心技术均具有自主知识产权,具有全国产化方案,可满足高安全领域使用;

具有设备安全、数据安全、控制安全、通信安全解决方案;

  • 大数据处理能力:采用云计算与大数据等先进技术,可实现海量异构数据采集、实时分析与实时决策,具有优越的处理能力。

  • 强大的可扩展性:采用先进的智能网关技术、OPC-UA、SOA技术,可根据业务需求变更完成系统建设与部署。

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第33张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第34张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第35张图片

产品质量数据现状:

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第36张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第37张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第38张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第39张图片

成功案例:

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第40张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第41张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第42张图片

【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践_第43张图片




工业大数据应用发展研究报告

李伯虎

工业大数据作为新一代信息技术和产业发展的核心,正深刻影响着我国制造业的研发设计、生产制造、经营管理、销售服务等全产业链各个环节,未来必将为推动传统制造业转型升级,实现“中国制造2025”制造强国战略目标提供强有力的支撑。


一、工业大数据应用状况分析

1.创新商业模式,催生制造业新业态

2009年我国学者在国际上率先提出“云制造”理念,将现有网络化制造和服务技术同云计算、云安全、高性能计算、物联网等技术融合,实现各类制造资源(制造硬设备、计算系统、软件、模型、数据、知识等)统一的、集中的智能化管理和经营,为制造全生命周期过程提供可随时获取的、按需使用的、安全可靠的、优质价廉的各类制造活动服务。自“云制造”理念提出以来,通过构建云制造支撑平台,面向全社会整合制造资源,促进资源的有效共享、集成和整合,提升全社会工业生产要素利用效果和运行效率,推动形成了适应互联网经济发展要求的资源共享、能力协同,线上线下互动、合作各方互利共赢的产业形态。同时,面向广大制造业中小企业提供了开放性、社会化、协同式的创业创新服务,并使之成为推动“大众创新,万众创业”政策落地的关键载体。

云制造所催生的制造业新生态具有“泛在互联、数据驱动、共享服务、跨界融合、自主智慧、万众创新”的“互联网+”时代特征,其中数据驱动是重要核心支撑,在云环境下市场需求自动采集、精准营销、企业风险识别和预警、面向生产任务的企业动态联盟、大规模个性化定制需求采集及制造、资源的特征提取及虚拟化、资源的动态调度和整合、制造业务的协同、供需对接等方面,为云制造提供支撑。


2.促进制造过程优化、变革制造模式

■制造过程和系统的优化

利用工业大数据技术,通过工业制造环境的各种传感器、加工设备、加工对象、工控系统、工业软件、工业管理信息系统等的互联互通,开展相关数据的采集、存储和分析,实现制造合规性监测、设备状态监控与故障预警、工厂能耗分析、安全事故监控及预警、工业供应链分析和优化等,促进工业环境下的信息共享、系统互联整合和业务协同,推动制造过程的自动化、柔性化以及制造全过程的科学决策和智能化控制。

更进一步,利用工业大数据技术整合企业设计数据、工艺数据、制造执行数据、生产准备数据、库房数据、质量数据、财务数据等,并开展数据挖掘分析,实现订单需求获取、产品研发、生产管控、供应链管理以及产品服务运维全流程的贯通和各业务环节的业务协同,提升工业企业的科研生产和运营管控能力。

■变革制造模式

工业大数据技术不断促进工业企业创新产品和服务,推动传统制造业的“产品+制造”为核心的经营模式向“产品+服务”的模式转变。在需求分析环节,利用互联网商务平台,对获取的产品销售数据和用户的个性化定制数据进行数据挖掘分析,推动工业企业产品创新设计,满足个性化定制需求。在设计研发环节,基于社会化产品个性化定制需求,通过设计资源的社会化共享和参与,培育众创、众包等研发新模式,提升企业利用社会化创新和资金资源能力。在制造执行环节,以工业大数据为核心动态规划构建柔性化制造过程,实现大规模个性化定制生产;在产品运维保障环节,利用产品中内置传感器,企业能够实时监测产品的运行状态,并进行分析和预测,从而产品的远程运维、故障的提前预警以及定制化的最优使用及运维解决方案等服务,推动工业企业服务化。


3.基于大数据的产品创新设计

基于大数据技术对市场潜在产品需求、产品设计、产品制造、产品维修保证等产品全生命周期过程相关信息进行采集,通过分析产品设计信息、制造信息、质量信息、运行状态信息、维修保障信息等,对产品设计过程中的产品设计分离面优化调整、对产品制造过程中成本居高不下或产品制造过程中质量问题突出的零部件进行设计优化及工艺调整、对影响产品正常运行寿命的关键零部件进行定位追踪等,与设计人员形成闭环反馈机制,不断迭代,实现产品的创新设计。


4.基于大数据的供应链分析和优化服务

利用大数据采集分析制造企业从订单获取到订单交付全过程相关信息,推动制造企业供应链的不断调整优化,主要体现在如下方面:1)通过大数据技术采集分析企业产品相关的信息预测订单需求,基于订单需求和产品定义信息进一步展开为企业各生产环节所需的原材料、元器件、标准件、成附件等的需求数量和需求时间,为企业计划人员和采购人员开展相关工作提供支撑;2)通过采集企业的采购到货及时情况、数量情况、质量情况等信息,并与企业制造计划、生产准备以及现场制造执行情况动态联动,不断提升供应链运行效率和精准性,并为供应商绩效评估提供决策支持;3)通过对供应链的物料发运情况、物流运输情况等信息进行采集,结合企业的生产计划排程情况以及库房情况,提升物流的精准性和及时性,减少供应链风险,并可以进一步优化企业库存,减少资金积压,降低制造成本。


5.大数据驱动下的生产管理

通过采集企业生产过程相关的产品定义信息、企业人机物等资源信息、订单及计划排程信息,并进行分析,可实现动态分析生产过程的人机物绩效,实时发现生产过程瓶颈因素,优化制造企业的整体产出。

通过采集计划排程信息和企业人机物等资源信息,实现企业制造执行排程与生产准备的精准联动,为制造执行过程提供人员、设备、工具工装、刀具、技术资料等保障,保障计划排程的可执行性,减少生产准备导致的时间浪费,提升制造绩效。

通过实时采集产品制造执行过程中的人机料法环等信息,对产品制造过程的相关质量状况进行分析,精确跟踪追溯不合格品的产品根源、影响的产品批次,并为质量归零措施以及措施的执行贯彻提供保障和支持。


二、存在的问题和制约因素

(一)存在的问题

1.技术方面存在的问题

工业环境下,工业大数据首先面临的多类型、多协议的工业通信协议,以及智能设备、传感器、工控系统、工业软件、工业管理信息等大量异质终端,如此种种决定了工业大数据必然呈现结构化、半结构化、非结构化数据混杂,采集频率高、实时性强等特征,需要针对上述典型工业大数据场景,支撑构建高可用的,高可靠的、分布式的海量数据采集、聚合和传输的系统,提供符合大数据特点的存储、分析与可视化展示,并保障数据分析展示的及时性、有效性和安全性,仅依靠互联网大数据的架构和技术体系显然不能满足上述需求,从这个角度来说,技术方面存在的主要问题是工业大数据应用架构、核心技术体系以及工业大数据平台和工具尚有待进一步完善。

参考互联网大数据主流平台相关架构,工业大数据应用架构主要包括数据采集及抽取、数据存储、数据预处理、数据分析、资源管理与调度、数据展示等。数据采集及抽取通过传感器、手工录入、自动爬取、ETL中间抽取等多种方式完成数据的采集,采集的数据中一部分需要实时进行数据流分析的数据直接送到大数据实时分析处理引擎进行处理,引擎完成实时分析处理后,一方面根据具体情况,将分析处理后的信息传递给关系型数据仓库进行存储,同时将相关日志信息等数据传递给大数据存储进行存储,另一方面,将实时处理后的数据通过数据可视化处理系统处理,随后进行统一展示,方便用户进行实时监控和处理,如设备运行状况等。


2.应用方面存在的问题

工业大数据技术的应用是大数据技术和工业行业全价值链典型场景的融合应用,一方面整个制造价值链涵盖从需求订单的获取,到产品设计、工艺规划、制造执行、生产保障以及产品的运维和保障等各个产业链环节,每个环节的工业大数据应用需求和场景也各异;另一方面工业企业细分行业众多,各个细分行业之间应用场景差异巨大,如石化制药等流程工业强调各种原材料的精确配比、生产过程的实时监控分析与控制,离散工业强调生产的组织、策划与制造执行等,因此一个通用的工业大数据应用解决方案包打天下的情形基本不可能存在,即使存在,其针对性、实用性也欠佳。总体上,当前我国工业企业在工业大数据应用方面存在的问题如下。

信息资源缺少总体规划,数据质量堪忧。一方面由于工业企业信息化历程的必然发展路径使然,一方面由于工业企业信息化投入不足,在信息化建设开展过程中,未能科学合理进行信息化规划和企业信息资源的规划,由此必然导致业务和信息系统的支撑关系不强,工业企业管控、制造执行必需的信息系统或信息资源缺乏等现象,而缺少相应的信息系统和数据源支撑,工业大数据在此类工业企业当中的应用缺少数据基础,更无论工业大数据应用实施效果。且由于对企业数据资源缺少整体梳理和规划,必然导致各业务环节的数据散落在各业务部门,相关的数据编码、处理机制各异等,从而导致企业数据可用性差、数据质量不高、业务环节之间数据集成共享困难,工业大数据技术手段难以发挥应用的价值。

工业企业数据治理体制和机制有待进一步健全。由于历史原因,我国多数工业企业的信息化部门和业务部门相互独立,信息化部对企业业务知之甚少,业务部门不了解信息化,以企业数据资源管理为核心的数据治理体制和机制尚未建立或并不健全,业务部门在业务开展过程中急需工业大数据支撑业务工作的开展,但苦于不懂工业大数据相关技术,不能合理有效进行表达,信息化部门人员熟悉工业大数据相关技术,但对业务部门的应用场景并不了解,对工业大数据在业务过程中的应用场景、适用范围以及能够给企业带来的价值不甚了解,难以围绕业务的战略规划和发展提出明确的工业大数据需求,其信息化部门和业务部门相比往往处于弱势地位,单靠信息化部门往往难以推动大数据的应用和推广。


3.产业方面存在的问题

工业大数据在产业方面存在的问题主要表现在工业大数据产业布局、工业大数据和工业产业链的融合两个方面。

产业布局缺少基础支撑,面临空心化。纵观欧美发达国家工业大数据产业全景,其在理论、基础设施、平台框架、典型工业场景应用等方面的产业布局已经完成,反观我国工业大数据产业,我国在工业大数据的平台框架、重点核心技术和数据库方面,均存在较大差距,整个工业大数据产业布局缺少基础支撑,面临空心化危机。

产业链融合程度低。我国一些制造企业在局部应用工业大数据方面已经取得了一定的成效,但多局限在内部业务的改善、产品成本的减少、质量控制、企业运营效率提升等方面,在工业大数据技术与制造需求获取、产品研发、制造执行、供应链管理、产品服务保障等业务环节深度融合方面还有待进一步拓展和深化。


(二)制约因素

1.工业大数据安全和开放体系亟待建立

数据安全和数据开放体系建立是工业大数据大规模应用的两个重要前提。如前所述,我国多数工业企业的信息化建设基本上均是由业务部门在业务开展过程中根据自身的局部需求出发,开展建设,缺少统一规划,形成了部门割据的信息化烟囱,导致数据编码不一致,系统之间不能相互通信,业务流程不能贯通,因此,我国工业企业无论在数据的总量上,还是数据的质量上,均和欧美发达国家制造企业存在较大差距,且由于行业垄断或商业利益等原因,数据的开放程度也不高。

另一个制约我国工业大数据应用发展的重要因素是政策法规体系不健全。工业大数据的开发和利用既要满足工业企业典型应用场景的业务发展需求,也要防止涉及国家、企业秘密的数据发生泄漏。而目前,我国在工业大数据的利用、评价、交换以及信息安全保护方面的法律法规尚有待进一步健全,在很大程度上抑制了工业大数据的应用广度和深度,不利于工业大数据生态系统的建设和培育。


2.基于工业大数据的企业管理理念和运作模式变革

随着智能设备、物联网技术、智能传感器、工业软件以及工业企业管理信息系统等在工业企业的广泛应用,综合利用各种感知、互联、分析以及决策技术,通过实时感知、采集、监控现场制造加工状况、物流情况、生产准备情况、技术状态管理情况,并开展数据挖掘分析,急需工业大数据平台和相关技术的支撑。

工业大数据应用目的是推动工业企业基于对内外部环境相关数据的采集、存储和分析,实现企业与内外部关联环境的感知和互联,并利用工业大数据分析技术开展挖掘分析,支撑工业企业基于数据进行决策管控,提升企业决策管控的针对性、有效性。


3.工业大数据人才缺乏制约产业发展

工业大数据技术应用的关键是揭示各种典型工业应用场景下,各种数据的内在关联关系,因此,工业大数据技术的应用者不但要掌握工业大数据的相关知识和工具,还需要深刻了解制造业典型业务场景,并结合工业大数据的分析和可视化展示情况,结合业务场景进行合理解读,此外,还需要结合业务场景进行解决方案的制定和管理决策,以上工业大数据人才的要求将大大制约工业大数据产业发展进程。

整体上,工业大数据对复合型人才的能力需求更强烈,目前我国工业大数据的高级管理决策人才、数据分析人才、平台架构人员、数据开发工程师、算法工程师等多个方向均存在较大缺口,极大阻碍了工业大数据产业的发展。


三、技术、应用及产业发展趋势

(一)工业大数据技术和应用发展趋势

1.工业大数据应用的外部环境日益成熟

以工业4.0和工业互联网为代表的智能化制造技术已成为制造业发展的趋势,智能化制造技术的研究和应用推动了工业传感器、控制器等软硬件系统和先进技术在工业领域的应用,智能制造应用不断成熟,一方面正在逐步打破数据孤岛壁垒,实现人与机器、机器与机器的互联互通,为工业数据的自由汇聚奠定基础,另一方面进一步增强了工业大数据的应用需求,使得工业大数据应用的外部环境日益成熟。


2.人工智能和工业大数据融合加深

工业大数据的广泛深入应用,离不开机器学习、数据挖掘、模式识别、自然语言理解等人工智能技术清理数据、提升数据质量和实现数据分析的智能化,工业大数据的应用和安全保障都离不开人工智能技术,而人工智能的核心是数据支持,工业大数据反过来又促进人工智能技术的应用发展,两者的深度融合成为发展的必然趋势。


3.云平台成为工业大数据发展的主要方向

工业大数据云平台是推动工业大数据发展的重要抓手。使得传统的互联网大数据处理方法、模型和工具难以直接使用,增加了工业大数据的技术壁垒,导致工业大数据解决方案非常昂贵,云平台的出现,为工业企业特别是中小型工业企业随时、按需、高效地使用工业大数据技术和工具提供了便宜、可扩展、用户友好的解决方案,大大降低了工业企业拥抱工业大数据的门槛和成本。


4.工业大数据将催生新的产业

除了云平台,新的大数据可视化和自动化软件也能大大简化了工业大数据的数据处理、分析过程,打破了大数据专家和外行之间的壁垒。这些软件的出现使得企业可以自主利用工业大数据,做相对简单的工业大数据分析,以及外包复杂的工业大数据应用需求给专业工业大数据服务公司。从而催生新产业,包括工业大数据存储、清理、分析、可视化等相关的软件开发、外包服务等。


(二)工业大数据技术和应用发展建议

工业大数据已经成为制造业转型升级的核心要素,是工业企业智能制造和智慧服务实现智慧化的基础,需要在“技术、应用、产业”各个层次协调发展,并持续建设工业大数据技术创新体系及人才培养体系。

在技术方面体现6个重视:重视工业大数据基础理论、算法、决策分析问题的持续研究;重视工业大数据技术与信息通信技术、人工智能技术、系统工程技术与制造领域技术等多种技术的深度融合研究;重视对面向用户的工业大数据云服务技术的研究;重视基于大数据的制造业全生命周期的新模式、流程、手段的技术研究;重视符合“共享经济”的商业模式技术研究;重视安全技术及相关标准和评估指标体系技术研究;

在应用方面体现4个突出:突出制造特色、行业特点开展;突出问题为导向;突出大数据驱动下的智慧云制造管理运行的模式、手段和业态的变革;突出制造三要素、五流的综合集成化、优化和智慧化。

在产业方面体现3个加强:加强大数据技术工具集和平台的研发产业;加强大数据系统的构建与运行产业;加强工业云数据中心的运营服务产业。


作者:李伯虎,博士生导师,中国工程院院士

本文摘自《中国大数据应用发展报告(2017)》



人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链




长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“数据科学家”、“赛博物理”、“供应链金融”


官方网站:AI-CPS.NET



本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:[email protected]




你可能感兴趣的:(【工业大数据】张洁教授现场剖析制造业大数据制造的思考与实践)