- 论文阅读:Learning to Compose Dynamic Tree Structure for Visual Context(CVPR2019)
糖豆豆今天也要努力鸭
机器学习场景图scenegraph场景理解计算机视觉cv
因为我的方向是场景图,所以仅介绍这篇论文中有关场景图的内容,不涉及VQA。(a)FeatureExtraction先对输入图像进行目标检测,每个proposal的视觉特征x包括以下特征:ROIAlignfeature(2048维),空间feature(8维),论文这里说视觉特征不局限于bbox,实例分割特征和全景特征也可以。(b)构建可学习的对称矩阵S(1)S的计算方法如下:f(xi,xj)称为对
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- CVPR19-Few-shot
vieo
CVPR19-Few-shot本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。基于度量的方法(在原型网络,图卷积的基础上改进)RevisitingLocalDescriptorbasedImage-to-Class
- DA(语义分割3)Bidirectional Learning for Domain Adaptation of Semantic Segmentation
西瓜_f1c9
BidirectionalLearningforDomainAdaptationofSemanticSegmentation来源:CVPR2019作者:YunshengLi,LuYuan,NunoVasconcelos机构:加州大学圣地亚哥分校(UCSanDiego),微软数据集:GTA5和SYNTHIA是原域,Cityscapes是目标域。网络:translationmodel(F)isCycl
- 论文笔记Multi-Person Pose Estimation with Enhanced Channel-wise and Spatial Information CVPR2019
Maniache
这周看了一篇新的来自CVPR2019的姿态估计paper,不过对计算机视觉任务来说都应该能带来一些启发,笔者按照自己的理解做一个笔记,欢迎讨论拍砖,感谢!论文题目如下:一、MotivationandContribution首先,在姿态估计领域,一般面临的挑战主要有光照、尺度差异、遮挡等等。一般来说,高层的低分辨率的语义特征可以用来推导看不见的关节,而低层的高分辨率的语义特征对适应尺度变化推导小尺度
- Pytorch-RealSR超分模型
呆呆珝
计算机视觉(分类/检测/分割)pytorch人工智能python
1.前言RealSR是一种基于学习的单图像超分辨率(SISR)模型,专门针对真实世界的图像。它由腾讯AI实验室于2020年提出。RealSR的核心创新是提出了一种新的退化模型,该模型能够更好地模拟真实世界的退化过程。该模型考虑了真实世界图像中存在的多种退化因素,包括模糊、噪声和色彩失真。RealSR还提出了一种新的网络架构,该架构能够更好地学习真实世界的退化模型。该网络架构采用了一种递归结构,能够
- DA(语义分割2)ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation
西瓜_f1c9
ADVENT:AdversarialEntropyMinimizationforDomainAdaptationinSemanticSegmentation来源:CVPR2019作者:Tuan-HungVu,HimalayaJain,MaximeBucher,MatthieuCord,PatrickP´erez机构:索邦大学(位于法国巴黎),valeo.ai(位于法国巴黎)代码:作者在github
- 《MS-TCN++》算法详解
ce0b74704937
论文地址:《MS-TCN++:Multi-StageTemporalConvolutionalNetworkforActionSegmentation》代码地址:https://github.com/sj-li/MS-TCN2从名字可以看出在该文章之前还有一篇《MS-TCN》发表于CVPR2019,MS-TCN在本文的前部分会被介绍。本文《MS-TCN++》则是发表于TPAMI2020。一、MS-
- EMT(light sr):Efficient Mixed Transformer for Single Image Super-Resolution
Miracle Fan
RGB图像超分transformer深度学习人工智能计算机视觉超分辨率重建
EMT论文地址:EfficientMixedTransformerforSingleImageSuper-Resolution代码地址:Fried-Rice-Lab/EMT:EfficientMixedTransformerforSingleImageSuper-Resolution(github.com)摘要最近,基于Transformer的方法在单图像超分辨率(SISR)中取得了令人印象深刻的
- YoloV8改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移
静静AI学堂
YOLOswift开发语言
摘要https://arxiv.org/pdf/2311.12770.pdfhttps://github.com/hongyuanyu/SPANSPAN是一种超分网络模型。SPAN模型通过使用参数自由的注意力机制来提高SISR的性能。这种注意力机制能够增强重要信息并减少冗余,从而在图像超分辨率过程中提高图像质量。具体来说,SPAN模型具有以下特点:参数自由:与传统的注意力机制相比,SPAN模型不依
- YoloV5改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移
静静AI学堂
YoloV5V7改进与实战——高阶篇YOLOswift开发语言
摘要https://arxiv.org/pdf/2311.12770.pdfhttps://github.com/hongyuanyu/SPANSPAN是一种超分网络模型。SPAN模型通过使用参数自由的注意力机制来提高SISR的性能。这种注意力机制能够增强重要信息并减少冗余,从而在图像超分辨率过程中提高图像质量。具体来说,SPAN模型具有以下特点:参数自由:与传统的注意力机制相比,SPAN模型不依
- 最新发布SPAB模块,YOLOv5改进之SPAB
这糖有点苦
玩转YOLOYOLOv5/v7魔改!YOLO人工智能深度学习计算机视觉python
目录一、原理二、代码三、应用到YOLOv5一、原理单幅图像超分辨率(SISR)是低分辨率计算机视觉中的一项重要任务,旨在从低分辨率图像中重建高分辨率图像。传统的注意机制虽然显著提高了SISR的性能,但往往导致网络结构复杂、参数过多,导致推理速度慢
- 论文笔记 | 使用深度光照场估计对欠曝光照片进行增强
理想就是派大星
计算机视觉深度学习
UnderexposedPhotoEnhancementusingDeepIlluminationEstimation|CVPR2019工作提出了一个通过估计出一个图像到光照的映射来对欠曝光图像进行增强,并在各种光照约束和先验的基础上设计新的损失函数准备了一个新的数据集,含有3000张欠曝光的图像,每张图像都经过专业修复对所提出的模型在现有的数据和新数据集上进行测试,显示出该方法在质量和处理数量上
- 旷视14篇CVPR 2019论文,都有哪些亮点?
城市中迷途小书童
译者|Linstancy责编|Jane出品|AI科技大本营(公众号id:rgznai100)回顾CVPR2018,旷视科技有8篇论文被收录,如高效的移动端卷积神经网络ShuffleNet、语义分割的判别特征网络DFN、优化解决人群密集遮挡问题的RepLose、通过角点定位和区域分割优化场景文本检测的一种新型场景文本检测器、率先提出的可复原扭曲的文档图像等等。今年,旷视科技在CVPR2019上共有1
- 论文阅读——MCAN(cvpr2019)
じんじん
论文人工智能
补充一下MCAN-VQA:对图片的处理:首先输入图片到FasterR-CNN,会先设定一个判断是否检测到物体的阈值,这样动态的生成m∈[10,100]个目标,然后从检测到的对应的区域通过平均池化提取特征。第i个物体特征表示为:,所以一张图片就被表示为一个特征矩阵:。对问题的处理:首先分成词,最多分为14个词,然后用300-DGloVewordembeddings变成向量,然后过LSTM,使用LST
- 基于生成对抗性网络的单图像超分辨率技术综述
水水水淼
阅读笔记人工智能
论文:AreviewonSingleImageSuperResolutiontechniquesusinggenerativeadversarialnetwork单图像超分辨率(SISR)是一种从低分辨率(LR)图像中获得高像素密度和精细细节,以获得升级和更清晰的高分辨率(HR)图像的过程。在过去的十年中,基于卷积神经网络(CNN)的SISR在生成×3大小的超分辨率图像方面取得了令人印象深刻的成果
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 【论文精读2】R-MVSNet
你不困我困
论文精读深度学习mvc
R-MVSNet【递归多视图立体网络】,论文全名:“RecurrentMVSNetforHigh-resolutionMulti-viewStereoDepthInference”,CVPR2019(CCFA)在MVSNet的基础上做了一些改进,主要解决的问题是代价体正则化(CostVolumeRegulazation)过程当中对内存过大的问题,主要做了三点改动:(1)在代价体正则化步骤,使用序列
- 用于人脸识别的Additive Angular Margin Loss(CVPR2019)
tzc_fly
论文阅读笔记深度学习计算机视觉
目录摘要1.Introduction2.Method2.1.ArcFace2.2.ComparisonwithSphereFaceandCosFace2.3.ComparisonwithSphereFaceandCosFace3.Experiments个人总结摘要在使用DCNN进行大规模人脸识别的特征学习中,一个主要的挑战是设计适当的loss来增强识别能力。Centerloss惩罚欧氏空间中深层特
- ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation(CVPR2019)
odss
论文笔记迁移学习深度学习计算机视觉
这篇文章主要是基于对抗+熵图。VuTH,JainH,BucherM,etal.Advent:Adversarialentropyminimizationfordomainadaptationinsemanticsegmentation[C]//ProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition.2019:2
- CenterNet网络精读与分析
LucasJin
近期CVPR2019的最新论文CenterNet在一篇文章中就提出了一个能够解决目标检测、姿态检测、3D单目检测的掉炸天网络,一时间激起来了千层波浪。这几乎是未来目标检测一个全新的领域,或者说摈弃了一样老旧的目标检测思路,开始了一个新的纪元。让我们来看一下这篇论文能够做的:image.png首先速度很快。image.png几乎是一个全能的网络。但是在这绚丽的表面背后,我们来窥探一下它的内部运作原理
- 谷歌查看html地址_104篇CVPR 2019论文,追踪谷歌、Facebook、英伟达研究课题
weixin_39674190
谷歌查看html地址
【新智元导读】人工智能顶级会议CVPR刚刚公布了最佳论文,谷歌、Facebook和英伟达也随后公布了自家发表的论文共计104篇,本文列出了三家大厂论文的完整列表。本周,在美国加利福尼亚州长滩举办了CVPR2019(计算机视觉和模式识别会议),这是一次重要的年度计算机视觉活动,包括主要会议和几个共同举办的研讨会和教程。本次CVPR参会人数超过6500,CVPR2018超过6000人;CVPR2017
- cvpr2019 目标检测算法_目标检测算法有哪些?
weixin_39872044
cvpr2019目标检测算法
传统方法:级联分类器框架:Haar/LBP/积分HOG/ACFfeature+Adaboost级联分类器最先由PaulViolaandMichaelJ.Jones在CVPR2001中提出来。其实这就是boosting由简单弱分类拼装强分类器的过程,现在看起来很low,但是这个算法第一次使目标检测成为现实!至于使用的特征,Haar简单也够用了,LBP实在是没必要去扒了。。。至于HoG/ACF,下面说
- 【论文阅读】SISR综述:From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution
沐_辰_
降尺度论文阅读论文阅读深度学习计算机视觉超分辨率重建
FromBeginnertoMaster:ASurveyforDeepLearning-basedSingle-ImageSuper-Resolution论文地址:https://doi.org/10.48550/arXiv.2109.14335摘要单幅图像超分辨率(SISR)是图像处理中的一项重要任务,旨在提高成像系统的分辨率。近年来,在深度学习(DL)的帮助下,SISR取得了巨大的飞跃,并取得
- CV Code | 本周新出计算机视觉开源代码汇总(语义分割、目标检测、超分辨率、网络结构设计、训练策略等)...
我爱计算机视觉
点击我爱计算机视觉标星,更快获取CVML新技术CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像增广、医学图像分割、图像恢复、目标检测、语义分割、超分辨率、显著目标检测、轻量级网络结构设计、网络规范化、标注工具等,其中有多篇来自CVPR2019与ICML2019的论文代码。希望对你有帮助~ICML2019mixup图像增广,噪声标签建模改进网络训练Unsupervisedlabelnoi
- CVPR 2022 论文和开源项目合集
不忘初心t
智能控制系统与项目实战智能驾驶目标跟踪人工智能计算机视觉
SourceURL:file:///home/kingqi/桌面/lidar算法综述.docxCVPR2022论文和开源项目合集CVPR2022论文和开源项目合集(paperswithcode)!CVPR2022收录列表ID:https://drive.google.com/file/d/15JFhfPboKdUcIH9LdbCMUFmGq_JhaxhC/view往期CVPR如下:CVPR2019
- [CVPR19]MnasNet: Platform-Aware Neural Architecture Search for Mobile
gdtop818
NEW_PAPER
本篇发表于CVPR2019,作者为Google的QuocVLe。本篇使用的额scale方法应该是ICML2019发表EfficientNet:RethinkingModelScalingforConvolutionalNeuralNetworks的姊妹篇。不仅如此,本篇提出的架构也是在移动端十分硬核的应用。Abstract为移动设备设计卷积神经网络(CNN)是一个挑战,因为移动模型需要小而快,但仍
- Patch2Pix(CVPR 2021)特征点检测与匹配论文精读笔记
秋山丶雪绪
特征点检测与匹配深度学习计算机视觉人工智能特征点检测匹配
前言论文地址论文补充材料/附录代码地址 翻译并记录阅读每段的感受和写作逻辑。大概了解特征点检测和目标检测的大致方法的话,不用递归式读论文也能基本理解本文的方法。参考文献检测:[5]SuperPoint[6]D2-Net[7]Beyondcartesianrepresentationsforlocaldescriptors(CVPR2019)[16]Contextdesc:Localdescrip
- 多任务模型融合如何平衡?
林桉
平衡目标不同任务loss量级相近不同任务相近速率学习不同任务数据量级接近不同任务重要性程度近似评估不同任务不确定性估计废话少说上图个球的image.png1.加权融合1.1手动加权image.png人肉调权重。1.2动态加权平均核心思想:利用loss变化率,平衡多任务学习速度。[End-to-EndMulti-TaskLearningwithAttention],CVPR2019,Cites:10
- CVPR2019 | 15篇论文速递(涵盖目标检测、语义分割和姿态估计等方向)
Charcy阳
CVPR2019涵盖目标检测语义分割姿态估计
【导读】CVPR2019接收论文列表已经出来了,但只是一些索引号,所以并没有完整的论文合集。CVer最近也在整理收集,今天一文涵盖15篇CVPR2019论文速递,内容涵盖目标检测、语义分割和姿态估计等方向。特别鸣谢CV_arXiv_Daily公众号提供的素材,本文介绍的论文已经同步至:https://github.com/zhengzhugithub/CV-arXiv-Daily姿态估计[1]CV
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL