- CVPR2025|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
图像处理与计算机视觉论文相关底层视觉计算机视觉算法CVPR2025图像超分辨率图像复原图像增强
CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)1.超分辨率(Super-Resolution)AdaptiveDropout:UnleashingDropoutacrossLayersforGeneralizableImageSuper-ResolutionADD:AGeneralAttribution-DrivenDataAugmentationFrameworkfor
- 探索深度学习中的图像超分辨率:SMFANet 模型解析
RockLiu@805
深度学习人工智能
探索深度学习中的图像超分辨率:SMFANet模型解析在现代计算机视觉中,图像超分辨率(Super-Resolution)是一个备受关注的研究领域。它的目标是将低分辨率的图像恢复为高分辨率的图像,同时保留或增强细节信息。近年来,基于深度学习的方法在这方面的研究取得了显著进展。今天,我们将一起探索一个轻量级、高效的超分辨率模型——SMFANet,并深入分析其实现细节。一、超分辨率技术的意义与挑战图像超
- 人工智能混合编程实践:Python ONNX FP16加速进行图像超分重建
FriendshipT
人工智能混合编程实践人工智能python开发语言超分辨率重建FP16onnx
人工智能混合编程实践:PythonONNXFP16加速进行图像超分重建前言相关介绍Python简介ONNX简介图像超分辨率重建简介应用场景前提条件实验环境项目结构使用PythonONNXFP16加速进行图像超分重建sr_py_infer_fp16.py参考文献前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、
- 产品推荐|一款具有单光子级探测能力的科学相机千眼狼Gloria 1605
gaosushexiangji
人工智能科技计算机视觉
在生命科学超分辨率成像、量子物理单光子探测、交叉领域单分子追踪等应用场景中,具有单光子级探测能力的科学相机是科学实验的关键设备。千眼狼Gloria1605采用16μm×16μm大像元尺寸设计,基于Gpixel科学级背照式CMOS芯片,集成千眼狼底层图像处理技术、超低噪声模拟电路设计技术、热管理与真空封装技术、智能读出与控制技术、高级校正与算法五大核心技术,具备捕捉微弱单光子信号的能力。依据EMVA
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- Real-ESRGAN-GUI 安装与配置完全指南
Real-ESRGAN-GUI安装与配置完全指南Real-ESRGAN-GUILovelyReal-ESRGAN/Real-CUGANGUIWrapper项目地址:https://gitcode.com/gh_mirrors/re/Real-ESRGAN-GUI项目基础介绍Real-ESRGAN-GUI是一个基于Real-ESRGAN的图像超分辨率增强工具的简易图形用户界面。该界面旨在让用户轻松地
- 轻量化图像超分新范式:残差注意力网络重构超分计算逻辑
CodePatentMaster
网络重构
轻量化图像超分新范式:残差注意力网络重构超分计算逻辑一、技术原理深度剖析痛点定位当前图像超分辨率技术面临三重挑战:显存黑洞:传统残差网络堆叠导致参数量指数级增长,移动端部署时显存占用超过500MB细节丢失:常规通道注意力机制在压缩过程中丢失高频纹理信息,PSNR指标下降超过1.2dB推理延迟:典型4倍超分模型在移动端GPU的推理时间超过300ms,难以满足实时视频处理需求实现路径专利CN20241
- 【图像超分】论文复现:轻量化超分 | 频域感知Transfomer模型FreqFormer的Pytorch源码复现,跑通源码,获得指标、模型复杂度、超分结果图,架构拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)深度学习计算机视觉图像处理超分辨率重建人工智能pythonpytorch
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FreqFormer源码,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果;
- 非盲图像超分辨率与盲图像超分辨率技术2025.6.5
mozun2020
IP1:图像处理计算机视觉人工智能超分辨率重建图像处理信号处理
本文详细介绍非盲图像超分辨率与盲图像超分辨率技术。主要内容如下:基本概念与问题定义:介绍图像超分辨率的基本概念,解释盲与非盲超分辨率的核心区别,并使用表格对比两种技术。非盲图像超分辨率:原理与方法:详细说明非盲超分辨率的技术原理,列举典型方法,并介绍电力设备红外图像处理等应用场景。盲图像超分辨率:挑战与技术路线:分析盲超分辨率面临的三大挑战,系统分类技术方法(显式/隐式建模),并介绍Real-ES
- 【图像超分】论文复现:轻量化超分 | FMEN的Pytorch源码复现,跑通源码,整合到EDSR-PyTorch中进行训练、重参数化、测试
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FMEN源码(只给了模型实现和权重),将FMEN整合到EDSR-PyTorch中进行训练和重参数化测试获
- 【Block总结】TAB,令牌聚合块|融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用
AI浩
Block总结人工智能计算机视觉
论文信息本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文连接:https://arxiv.org/pdf/2503.06896Github代码链接:https://github.
- 【深度学习】CAB:通道注意力模块
shanks66
各种深度学习模块深度学习人工智能
@[toc]CAB:通道注意力模块CAB:通道注意力模块CAB(ChannelAttentionBlock)是一种通道注意力模块,通常用于计算机视觉任务中,特别是在图像恢复、超分辨率、去噪等任务中。它的核心思想是通过学习通道之间的依赖关系,自适应地调整每个通道的特征响应,从而增强模型对重要特征的提取能力。CAB的核心思想通道注意力机制:通过对每个通道的特征进行全局池化,获取全局信息。使用全连接层(
- 智能光学计算成像技术与应用前沿会议通知
m0_75133639
光电光学成像全息成像光学光电光子学光电工程师生物医学工程
会议背景智能光学计算成像是人工智能与光学成像深度融合的前沿领域,通过深度学习、光学神经网络、超表面光学及量子光学等技术,显著推动成像技术的革新。当前研究热点包括:-深度学习赋能的成像技术:如高速多模光纤成像、神经渲染全息三维重建、超分辨率成像-先进光谱与计算成像:基于超表面和衍射光栅的高光谱信息获取、压缩感知成像、无透镜成像-端到端联合设计:融合可微光学模型与深度学习算法,实现硬件-软件协同优化会
- 深度学习中的卷积和反卷积
思绪漂移
深度学习人工智能
深度学习中的卷积和反卷积一、引言:为什么需要卷积和反卷积?在计算机视觉领域,卷积神经网络(CNN)通过卷积操作实现了平移不变性特征提取,而反卷积(TransposedConvolution)则作为图像重构的核心技术,广泛应用于图像分割、超分辨率重建、生成对抗网络(GAN)等场景。二者的核心差异在于:卷积:高维→低维(如224x224图像→7x7特征图)通过局部连接和权值共享显著减少参数量,实现高效
- 【PyTorch项目实战】超分RCAN:使用非常深的残差通道注意力网络实现图像超分辨率 —— (自研)解决了RCAN恢复图像的模糊性
胖墩会武术
深度学习PyTorch项目实战python残差网络resnet超分辨率重建RCAN
文章目录一、论文详解1.1、项目背景1.2、研究现状1.3、论文核心1.4、网络模型(RCAN,ResidualChannelAttentionNetworks)1.4.1、残差中的残差(RIR,ResidualInResidual):由G个残差组(RG)和1条长跳跃连接(LSC)组成;每个RG由B个残差通道注意力块(RCAB)和1条短跳跃连接(SSC)组成;每个RCAB由1个通道注意力(CA)和
- python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。
OICQQ67658008
python超分辨率重建算法
python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。文章目录1.安装依赖库2.创建主窗口`main_window.py`3.实现SRResNet逻辑`srresnet.py`4.实现SRGAN逻辑`srgan.py`1.安装依赖库2.创建登录界面`login_window.py`3.创建主窗口`main_window.py`4.运行
- 【前沿 热点 顶会】CVPR 2025 录用的与图像|视频恢复、抠图、超分辨率、3D生成有关的论文
平安顺遂事事如意
顶刊顶会论文合集音视频人工智能3d超分辨率重建图像恢复视频
MatAnyone:StableVideoMattingwithConsistentMemoryPropagation仅依赖于输入帧的无辅助的视频抠图方法通常难以处理复杂或模糊的背景。为了解决这个问题,我们提出了MatAnyone,这是一个为目标分配的视频抠图量身定制的强大框架。具体来说,基于基于内存的范式,我们通过区域自适应内存融合引入了一个一致的内存传播模块,该模块自适应地集成来自前一帧的内存
- 探索真实世界超分辨率:Real-World Super-Resolution
司莹嫣Maude
探索真实世界超分辨率:Real-WorldSuper-Resolutionreal-world-sr项目地址:https://gitcode.com/gh_mirrors/re/real-world-sr在图像处理领域,超分辨率(Super-Resolution)是一个备受关注的话题,其目标是将低分辨率图像提升至高分辨率,从而提高细节和清晰度。然而,传统的超分辨率方法在应对现实世界的复杂场景时往往
- 【论文阅读】人脸修复(face restoration ) 不同先验代表算法整理
qianx77
论文阅读工具使用论文阅读算法
转眼做人脸复原(facerestoration)算法也一段时间了,根据自己的记忆整理一下自己的一些看法,算作个人记录,当然如果有人愿意分享自己的看法也是极好的。先挂下文章链接,下一篇在写总结。一、前述人脸修复(facerestoration)任务,起源于人脸超分辨率(facesuperresolution),可以算是从超分出来的一个分支。作为图像低级任务(lowlevel)中的一个,主要目的就是在
- 【图像超分】论文复现:无处不在的双分支通道-空间特征聚合思想!DAT的Pytorch源码复现,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果,架构拆解与代码实现!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能计算机视觉深度学习图像处理python超分辨率重建
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DAT源码(DAT,DAT-2,DAT-S,DAT-light),获得与论文一致的PSNR/SSIM、P
- 【图像超分】论文复现:多级窗口增大感受野,线性空间映射降低复杂度!高效超分模型HiT-SR的Pytorch源码复现,获得与论文一致的指标和超分可视化结果,核心结构SCC详解!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理计算机视觉深度学习
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通HiT-SR源码(HiT-SIR,HiT-SNG,HiT-SRF),获得与论文一致的指标和超分可视化结果
- 深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器
程序员非鱼
深度学习基础知识深度学习人工智能pytorchPixelShufflepython
在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。PixelShuffle和PixelUnshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。为什么需要PixelShuffle和PixelUnshufflePixe
- ChatGPT-o3辅助学术大纲效果如何?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能智能写作DeepSeekAIWritePaper
目录1引言2背景综述2.1自动驾驶雷达感知2.2生成模型演进:从GAN到Diffusion3相关工作3.1雷达点云增强与超分辨率3.2扩散模型在数据增广中的应用4方法论4.1问题定义与总览4.2数据预处理与雷达→体素表示4.3潜在体素扩散网络(LVDM)架构4.4训练策略4.5推理加速与系统集成5实验设计5.1数据集5.2评价指标5.3对比基线5.4实现细节6结果与讨论6.1量化结果6.2定性可视
- TPAMI 2025 | 探索 Transformer 中受频率启发的优化方法用于高效单图像超分辨率
小白学视觉
论文解读IEEETPAMItransformer深度学习人工智能IEEETPAMI论文解读
论文信息题目:ExploringFrequency-InspiredOptimizationinTransformerforEfficientSingleImageSuper-Resolution探索Transformer中受频率启发的优化方法用于高效单图像超分辨率作者:AoLi,LeZhang,YunLiu,CeZhu源码:https://github.com/AVC2-UESTC/Freque
- 什么是上采样和下采样
胡乱儿起个名
深度学习基础深度学习机器学习神经网络
卷积神经网络(CNN)中的**上采样(Upsampling)和下采样(Downsampling)**是调整特征图空间分辨率的关键操作,分别用于增大或减小特征图的尺寸。它们在图像分割、超分辨率、目标检测等任务中广泛应用。以下是详细解释和示例:1.下采样(Downsampling)目的:降低特征图的分辨率,减少计算量,同时扩大感受野,提取更高层次的语义特征。常见方法:池化(Pooling):最大池
- 关于反卷积(转置卷积)小记
文弱_书生
乱七八糟人工智能深度学习反卷积
反卷积(TransposedConvolution)详解1.反卷积概述反卷积(TransposedConvolution),又称转置卷积、反向卷积,在深度学习中主要用于上采样(upsampling),常见于**生成对抗网络(GANs)、语义分割(SemanticSegmentation)、超分辨率重建(Super-Resolution)**等任务。误解:反卷积不是普通卷积的数学逆操作,而是一种特定
- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- RTX 4090旗舰显卡效能实战剖析
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090凭借AdaLovelace架构的革新设计,在4K/8K分辨率下的游戏与创作场景中展现了突破性表现。本文将通过多维度实测数据,系统解析其核心性能:首先聚焦8K游戏帧率与光线追踪效果的实战表现,结合DLSS3.0技术的动态对比,揭示超分辨率技术对高负载场景的优化逻辑;随后深入探讨24GBGDDR6X显存在视频渲染与AI运算中的效率边界,同步验证显存
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号