- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 免费GPU平台教程,助力你的AI, pytorch tensorflow 支持cuda
zhangfeng1133
人工智能pytorchtensorflow
Colab:https://drive.google.com/drive/home阿里天池实验室:https://tianchi.aliyun.com/60个小时gputianchi.aliyun.com/notebook-ai/天池实验室_实时在线的数据分析协作工具,享受免费计算资源-阿里云天池移动九天:https://jiutian.10086.cn/edu/#/homekagglekaggl
- 49Kaggle 数据分析项目入门实战--绝地求生游戏最终排名预测
Jachin111
绝地求生介绍相信很多都玩过绝地求生这款游戏,其游戏规则主要是将100名玩家空手被扔到一个岛上,这些玩家必须探索、寻找、消灭其他玩家,直到只剩下一个玩家活着。绝地求生很受欢迎。这款游戏销量目前超过5000万份,是有史以来销量排名前五的游戏,每月有数百万活跃玩家。而我们本次实验的任务就是根据玩家在游戏中的种种表现来预测出其在最终的排名。导入数据并预览首先安装实验需要的statsmodels包。!pip
- 李沐《动手学深度学习》课程笔记:15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测
非文的NLP修炼笔记
#李沐《动手学深度学习》课程笔记深度学习人工智能
15实战:Kaggle房价预测+课程竞赛:加州2020年房价预测1.访问和读取数据集importhashlibimportosimporttarfileimportzipfileimportrequestsDATA_HUB=dict()DATA_URL='http://d2l_data.s3-accelerate.amazonaws.com/'defdownload(name,cache_dir=
- Kaggle Intermediate ML Part Two
卢延吉
NewDeveloper数据(Data)ML&ME&GPTDataML
CategoricalVariablesCategoricalvariables,alsoknownasqualitativevariables,areafundamentalconceptinstatisticsanddataanalysis.Here'sabreakdowntohelpyouunderstandthem:Whatarethey?Categoricalvariablesrepre
- 【工业智能】VSB Power Line Fault Detection-chapter1
凭轩听雨199407
学习python制造数据挖掘
VSBPowerLineFaultDetection-chapter1backgrounddataset数据介绍信号处理方法EDAtrainfeatureengineeringmodeltraintry信息来源:KaggleCompetition:VSBPowerLineFaultDetectionbackground中压高架线路绵延上百公里来为城市提供电力。因为距离很远,所以人工检测那些没有立即
- 【工业智能】VSB Power Line Fault Detection-chapter2
凭轩听雨199407
数据挖掘
工业智能】VSBPowerLineFaultDetection-chapter2关键信息依赖版本信息名词术语tricks信息来源:KaggleCompetition:VSBPowerLineFaultDetection分析冠军代码。源文件URL:https://www.kaggle.com/code/mark4h/vsb-1st-place-solution关键信息LGB标准5折验证9个特征所有特
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- R语言课程论文-飞机失事数据可视化分析
talle2021
数据分析r语言数据分析数据可视化
数据来源:AirplaneCrashesSince1908(kaggle.com)代码参考:ExploringhistoricAirPlanecrashdata|Kaggle数据指标及其含义指标名含义Date事故发生日期(年-月-日)Time当地时间,24小时制,格式为hh:mmLocation事故发生的地点Operator航空公司或飞机的运营商Flight由飞机操作员指定的航班号Route事故前
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 关于商店销售量的数据处理小问题(Python)
不期而遇__
pythonpandas数据分析大数据
通过学校举行的某次学科竞赛,我接触到了kaggle上的一道题:StoreSales-TimeSeriesForecasting。由于题主资质尚浅,本文将对前期数据处理的一些小问题做出解答,不涉及后续更难的问题。此处放原题链接:StoreSales-TimeSeriesForecasting题主也是看了很多的资料,也看到了CSDN上另外一位大佬写的文章,收获颇多,此处也放一下链接:Kaggle实战:
- 学习笔记 2019-04-30
段勇_bf97
HousePrices-bagging_xgboost+lasso+ridgeKaggle入門級賽題:房價預測FFMPEG视音频编解码零基础学习方法35岁程序员的独家面试经历公司名称公司介绍薪水车辆工程专业33岁简历有些传感器方面的东西20k-35k非渣硕是如何获得百度、京东双SP一些面试经验20k-40k吴以均的简历一个大牛的简历北京航空航天大学毕业生的简历厦门大学软件学院毕业生的简历名称介绍H
- 数据分析基础之《pandas(8)—综合案例》
csj50
机器学习数据分析
一、需求1、现在我们有一组从2006年到2016年1000部最流行的电影数据数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data2、问题1想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?3、问题2对于这一组电影数据,如果我们想看Rating、Runtime(Minutes)的分布情况,应该如何呈现数据?4、问题3对于这
- XGBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
XGBoost在机器学习中被广泛应用于多种场景,特别是在结构化数据的处理上表现出色,XGBoost适用于多种监督学习任务,包括分类、回归和排名问题。在数据挖掘和数据科学竞赛中,XGBoost因其出色的性能而被频繁使用。例如,在Kaggle平台上的许多获奖方案中,XGBoost都发挥了重要作用。此外,它在处理缺失值和大规模数据集上也有很好的表现。XGBoost是一种基于梯度提升决策树(GBDT)的算
- Kaggle Intro Model Validation and Underfitting and Overfitting
卢延吉
NewDeveloper数据(Data)ML&ME&GPT机器学习
ModelValidationModelvalidationisthecornerstoneofensuringarobustandreliablemachinelearningmodel.It'stherigorousassessmentofhowwellyourmodelperformsonunseendata,mimickingreal-worldscenarios.Doneright,it
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- kaggle实战图像分类-Intel Image Classification(附源码)
橘柚jvyou
分类人工智能pytorch计算机视觉深度学习
目录前言数据集加载定义网络训练网络验证网络前言本篇文章会讲解一个使用pytorch这个深度学习框架完成一个kaggle上的图像分类任务。主要会介绍如何加载数据集,导入网络训练数据,保存损失,精度变化曲线和最终模型,以及测试模型在验证集上的好坏。其数据集介绍可以看一下kaggle的网址,这里就不过多介绍。数据集来源:https://www.kaggle.com/datasets/puneet6060
- 机器学习 | 深入集成学习的精髓及实战技巧挑战
亦世凡华、
#机器学习机器学习集成学习人工智能boostingxgboost
目录xgboost算法简介泰坦尼克号乘客生存预测(实操)lightGBM算法简介《绝地求生》玩家排名预测(实操)xgboost算法简介XGBoost全名叫极端梯度提升树,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,接下来将较详细的介绍XGBoost的算法原理。最优模型构建方法:构建最优模
- 称霸kaggle的XGBoost究竟是啥?
猴小白
一、前言:kaggle神器XGBoost相信入了机器学习这扇门的小伙伴们一定听过XGBoost这个名字,这个看起来朴实无华的boosting算法近年来可算是炙手可热,别的不说,但是大家所熟知的kaggle比赛来看,说XGBoost是“一统天下”都不为过。业界将其冠名“机器学习竞赛的胜利女神”,当然,相信很多小伙伴也看过很多文章称其为“超级女王”。那么问题来了,为啥是女的?(滑稽~)XGBoost全
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- 北京房价预测——Kaggle数据
GavinHarbus
日暮途远,人间何世将军一去,大树飘零概述之前学习了加州房价预测模型,便摩拳擦掌,从kaggle上找到一份帝都房价数据,练练手。实验流程实验数据从Kaggle中选择了帝都北京住房价格的数据集,该数据集摘录了2011~2017年链家网上的北京房价数据。image下载并预览数据下载并解压数据image预览数据image每一行代表一间房,每个房子有26个相关属性,其中以下几个需要备注:DOM:市场活跃天数
- kaggle:泰坦尼克号获救预测_Titanic_EDA##
卜咦
问题数据来源于Kaggle,通过一组列有泰坦尼克号灾难幸存者或幸存者的训练样本集,我们的模型能否基于不包含幸存者信息的给定测试数据集确定这些测试数据集中的乘客是否幸存。代码与数据分析导入必要的包和titanic数据image数据集基本信息将数据分为不同类别,分别为类别型数据和数字型数据类别数据:Survived,Sex,andEmbarked.Ordinal:Pclass数字型数据:Age,Far
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- Xgboost
大雄的学习人生
在最近的Kaggle竞赛中,利用Xgboost的队伍经常能问鼎冠军,那么问题来了,Xgboost为什么这么强呢?算法释义Xgboost是一种带有正则化项,并利用损失函数泰勒展开式中二阶导数信息优化求解并增加一些计算优化的梯度提升树。Xgboost的目标函数定义为:其中l为损失函数,Ω(ft(x))是用于惩罚ft(x)模型复杂度的正则化项。根据上述目标函数可以得到Xgboost在每一轮前向分步算法中
- 机器学习数据预处理方法(数据重编码) ##2
恒c
机器学习人工智能数据分析
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)一、离散字段的数据重编码1.OrdinalEncoder自然数排序2.OneHotEncoder独热编码3.ColumnTransformer转化流水线二、连续字段的特征变换1.标准化(Standardization)和归一化(Normalization)2.连续变量分箱3.连续变量特征转化的ColumnTransform
- 机器学习逻辑回归模型训练与超参数调优 ##3
恒c
机器学习逻辑回归人工智能
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)逻辑回归模型训练逻辑回归的超参数调优基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理部分可见:机器学习数据预处理方法(数据重编码)逻辑回归模型训练fromsklearn.metricsimportaccuracy_score,recall_score,precision_score,f1_score,ro
- 50Kaggle 数据分析项目入门实战--分销商产品未来销售情况预测
Jachin111
分销商产品未来销售情况预测未来销售额预测介绍对于一个产品来说,其未来销售额的预测是一个重要的指标,也是一项重要的任务。例如,对于一部苹果手机来说。在上市之前,得先对销售额进行预测,才能确定出货量的大小。本次实验来源于Kaggle上的一个挑战,即:未来销售额预测,由俄罗斯的1C-Company软件分销公司发起,并提供数据。而本次实验的任务就是根据提供的数据,包含商品类别、商品名称、商店等信息和商品的
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p