蚂蚁森林是hive中的一个很有价值的项目
话不错说,步入正题
以下表记录了用户每天的蚂蚁森林低碳生活领取的记录流水。
user_low_carbon
user_id data_dt low_carbon
用户 日期 减少碳排放
u_001 2017/1/1 10
u_001 2017/1/2 150
u_001 2017/1/2 110
u_001 2017/1/2 10
u_001 2017/1/4 50
u_001 2017/1/4 10
u_001 2017/1/6 45
u_001 2017/1/6 90
u_002 2017/1/1 10
u_002 2017/1/2 150
u_002 2017/1/2 70
u_002 2017/1/3 30
u_002 2017/1/3 80
u_002 2017/1/4 150
u_002 2017/1/5 101
u_002 2017/1/6 68
u_003 2017/1/1 20
u_003 2017/1/2 10
u_003 2017/1/2 150
u_003 2017/1/3 160
u_003 2017/1/4 20
u_003 2017/1/5 120
u_003 2017/1/6 20
u_003 2017/1/7 10
u_003 2017/1/7 110
u_004 2017/1/1 110
u_004 2017/1/2 20
u_004 2017/1/2 50
u_004 2017/1/3 120
u_004 2017/1/4 30
u_004 2017/1/5 60
u_004 2017/1/6 120
u_004 2017/1/7 10
u_004 2017/1/7 120
u_005 2017/1/1 80
u_005 2017/1/2 50
u_005 2017/1/2 80
u_005 2017/1/3 180
u_005 2017/1/4 180
u_005 2017/1/4 10
u_005 2017/1/5 80
u_005 2017/1/6 280
u_005 2017/1/7 80
u_005 2017/1/7 80
u_006 2017/1/1 40
u_006 2017/1/2 40
u_006 2017/1/2 140
u_006 2017/1/3 210
u_006 2017/1/3 10
u_006 2017/1/4 40
u_006 2017/1/5 40
u_006 2017/1/6 20
u_006 2017/1/7 50
u_006 2017/1/7 240
u_007 2017/1/1 130
u_007 2017/1/2 30
u_007 2017/1/2 330
u_007 2017/1/3 30
u_007 2017/1/4 530
u_007 2017/1/5 30
u_007 2017/1/6 230
u_007 2017/1/7 130
u_007 2017/1/7 30
u_008 2017/1/1 160
u_008 2017/1/2 60
u_008 2017/1/2 60
u_008 2017/1/3 60
u_008 2017/1/4 260
u_008 2017/1/5 360
u_008 2017/1/6 160
u_008 2017/1/7 60
u_008 2017/1/7 60
u_009 2017/1/1 70
u_009 2017/1/2 70
u_009 2017/1/2 70
u_009 2017/1/3 170
u_009 2017/1/4 270
u_009 2017/1/5 70
u_009 2017/1/6 70
u_009 2017/1/7 70
u_009 2017/1/7 70
u_010 2017/1/1 90
u_010 2017/1/2 90
u_010 2017/1/2 90
u_010 2017/1/3 90
u_010 2017/1/4 90
u_010 2017/1/4 80
u_010 2017/1/5 90
u_010 2017/1/5 90
u_010 2017/1/6 190
u_010 2017/1/7 90
u_010 2017/1/7 90
u_011 2017/1/1 110
u_011 2017/1/2 100
u_011 2017/1/2 100
u_011 2017/1/3 120
u_011 2017/1/4 100
u_011 2017/1/5 100
u_011 2017/1/6 100
u_011 2017/1/7 130
u_011 2017/1/7 100
u_012 2017/1/1 10
u_012 2017/1/2 120
u_012 2017/1/2 10
u_012 2017/1/3 10
u_012 2017/1/4 50
u_012 2017/1/5 10
u_012 2017/1/6 20
u_012 2017/1/7 10
u_012 2017/1/7 10
u_013 2017/1/1 50
u_013 2017/1/2 150
u_013 2017/1/2 50
u_013 2017/1/3 150
u_013 2017/1/4 550
u_013 2017/1/5 350
u_013 2017/1/6 50
u_013 2017/1/7 20
u_013 2017/1/7 60
u_014 2017/1/1 220
u_014 2017/1/2 120
u_014 2017/1/2 20
u_014 2017/1/3 20
u_014 2017/1/4 20
u_014 2017/1/5 250
u_014 2017/1/6 120
u_014 2017/1/7 270
u_014 2017/1/7 20
u_015 2017/1/1 10
u_015 2017/1/2 20
u_015 2017/1/2 10
u_015 2017/1/3 10
u_015 2017/1/4 20
u_015 2017/1/5 70
u_015 2017/1/6 10
u_015 2017/1/7 80
u_015 2017/1/7 60
蚂蚁森林植物换购表,用于记录申领环保植物所需要减少的碳排放量
plant_carbon
plant_id plant_name low_carbon
植物编号 植物名 换购植物所需要的碳
p001 梭梭树 17
p002 沙柳 19
p003 樟子树 146
p004 胡杨 215
题目
1.蚂蚁森林植物申领统计
问题:假设2017年1月1日开始记录低碳数据(user_low_carbon),假设2017年10月1日之前满足申领条件的用户都申领了一颗 p004-胡杨,剩余的能量全部用来领取“p002-沙柳”。统计在10月1日累计申领“p002-沙柳”排名前10的用户信息;以及他比后一名多领了几颗沙柳。
得到的统计结果如下表样式:
u_007 66 3
u_013 63 10
u_008 53 7
u_005 46 1
u_010 45 1
u_014 44 5
u_011 39 2
u_009 37 5
u_006 32 9
u_002 23 1
2.蚂蚁森林低碳用户排名分析
问题:查询user_low_carbon表中每日流水记录,条件为:
用户在2017年,连续三天(或以上)的天数里,
每天减少碳排放(low_carbon)都超过100g的用户低碳流水。
需要查询返回满足以上条件的user_low_carbon表中的记录流水。
例如用户u_002符合条件的记录如下,因为2017/1/2~2017/1/5连续四天的碳排放量之和都大于等于100g:
运行结果如下所示
u_002 2017/1/2 150
u_002 2017/1/2 70
u_002 2017/1/3 30
u_002 2017/1/3 80
u_002 2017/1/4 150
u_002 2017/1/5 101
u_005 2017/1/2 50
u_005 2017/1/2 80
u_005 2017/1/3 180
u_005 2017/1/4 180
u_005 2017/1/4 10
u_008 2017/1/4 260
u_008 2017/1/5 360
u_008 2017/1/6 160
u_008 2017/1/7 60
u_008 2017/1/7 60
u_009 2017/1/2 70
u_009 2017/1/2 70
u_009 2017/1/3 170
u_009 2017/1/4 270
u_010 2017/1/4 90
u_010 2017/1/4 80
u_010 2017/1/5 90
u_010 2017/1/5 90
u_010 2017/1/6 190
u_010 2017/1/7 90
u_010 2017/1/7 90
u_011 2017/1/1 110
u_011 2017/1/2 100
u_011 2017/1/2 100
u_011 2017/1/3 120
u_013 2017/1/2 150
u_013 2017/1/2 50
u_013 2017/1/3 150
u_013 2017/1/4 550
u_013 2017/1/5 350
u_014 2017/1/5 250
u_014 2017/1/6 120
u_014 2017/1/7 270
u_014 2017/1/7 20
这里我们采用 Hive 的 HQL 来解决这两个问题。
create table plant_carbon (plant_id string,plant_name string,low_carbon int) row format delimited fields terminated by '\t' stored as textfile;
create table user_low_carbon(user_id String,data_dt String,low_carbon int) row format delimited fields terminated by '\t'stored as textfile;
load data local inpath '/opt/data/plant_carbon.txt' into table plant_carbon;
load data local inpath '/opt/data/user_low_carbon.txt' into table user_low_carbon;
select user_id,sum(low_carbon)low_carbons from user_low_carbon
where unix_timestamp(data_dt,'yyyy/MM/dd')>= unix_timestamp('2017/01/01','yyyy/MM/dd')
and unix_timestamp(data_dt,'yyyy/MM/dd')< unix_timestamp('2017/10/01','yyyy/MM/dd')
GROUP BY user_id ORDER BY low_carbons DESC
select low_carbon from plant_carbon where plant_id='p004'
select low_carbon from plant_carbon where plant_id='p002'
select t1.user_id,floor((t1.low_carbons-t2.low_carbon)/t3.low_carbon) plant_count from
(select user_id,sum(low_carbon)low_carbons from user_low_carbon
where unix_timestamp(data_dt,'yyyy/MM/dd')>= unix_timestamp('2017/01/01','yyyy/MM/dd')
and unix_timestamp(data_dt,'yyyy/MM/dd')< unix_timestamp('2017/10/01','yyyy/MM/dd')
GROUP BY user_id ORDER BY low_carbons DESC)t1,
(select low_carbon from plant_carbon where plant_id='p004')t2,
(select low_carbon from plant_carbon where plant_id='p002')t3 limit 11
select user_id,plant_count,plant_count-LEAD(plant_count,1,0) over(order by plant_count DESC) less_count
from (select t1.user_id,floor((t1.low_carbons-t2.low_carbon)/t3.low_carbon) plant_count from
(select user_id,sum(low_carbon)low_carbons from user_low_carbon
where unix_timestamp(data_dt,'yyyy/MM/dd')>= unix_timestamp('2017/01/01','yyyy/MM/dd')
and unix_timestamp(data_dt,'yyyy/MM/dd')< unix_timestamp('2017/10/01','yyyy/MM/dd')
GROUP BY user_id ORDER BY low_carbons DESC)t1,
(select low_carbon from plant_carbon where plant_id='p004')t2,
(select low_carbon from plant_carbon where plant_id='p002')t3 limit 11)t4 limit 10
由于这里使用了 LEAD() 函数,如果第 4 步不保留第 11 位用户,那么 LEAD() 得到的值就是0,继而导致 u_002 的 less_count 为 23。
题目 2 会比题目难不少,请大家保持好心态!
基本思路
select user_id, regexp_replace(data_dt,'/','-') data_dt,sum(low_carbon) sum_day_low_carbon from
user_low_carbon where year(regexp_replace(data_dt,'/','-'))=2017
group by user_id,data_dt having sum_day_low_carbon>100
select user_id,today,
LAG(today,1,'1970-1-1') OVER(PARTITION BY user_id ORDER BY today ) yesterday,
LAG(today,2,'1970-1-1') OVER(PARTITION BY user_id ORDER BY today ) before_yesterday,
lead(today,1,'1970-1-1') OVER(PARTITION BY user_id ORDER BY today ) tomorrow,
lead(today,2,'1970-1-1') OVER(PARTITION by user_id order by today) after_tomorrow from
(select user_id, regexp_replace(data_dt,'/','-') today,sum(low_carbon) sum_day_low_carbon from
user_low_carbon where year(regexp_replace(data_dt,'/','-')) = 2017
group by user_id,data_dt having sum_day_low_carbon>100)t1
select user_id,today,DATEDIFF(today,yesterday)t_d_y,DATEDIFF(today,before_yesterday)t_d_b,DATEDIFF(today,tomorrow)t_d_t,DATEDIFF(today,after_tomorrow)t_d_a
from(select user_id,today, LAG(today,1,'1970-1-1')over(PARTITION by user_id order by today) yesterday,LAG(today,2,'1970-1-1')over(PARTITION by user_id order by today) before_yesterday,
LEAD(today,1,'1970-1-1')over(PARTITION by user_id order by today) tomorrow,LEAD(today,2,'1970-1-1')over(PARTITION by user_id order by today) after_tomorrow from
(select user_id, regexp_replace(data_dt,'/','-') today,sum(low_carbon) sum_day_low_carbon from user_low_carbon where year(regexp_replace(data_dt,'/','-'))=2017 group by user_id,data_dt having sum_day_low_carbon>100)t1)t2
SELECT user_id, REGEXP_REPLACE(today,'-','/') data_dt from (
select user_id,today,DATEDIFF(today,yesterday)t_d_y,DATEDIFF(today,before_yesterday)t_d_b,
DATEDIFF(today,tomorrow)t_d_t,DATEDIFF(today,after_tomorrow)t_d_a from(select user_id,today ,
LAG(today,1,'1970-1-1')over(PARTITION by user_id order by today) yesterday,
LAG(today,2,'1970-1-1')over(PARTITION by user_id order by today) before_yesterday,
LEAD(today,1,'1970-1-1')over(PARTITION by user_id order by today) tomorrow,
LEAD(today,2,'1970-1-1')over(PARTITION by user_id order by today) after_tomorrow from
(select user_id, regexp_replace(data_dt,'/','-') today,sum(low_carbon) sum_day_low_carbon from
user_low_carbon where year(regexp_replace(data_dt,'/','-'))=2017
group by user_id,data_dt having sum_day_low_carbon>100)t1)t2)t3
where (t_d_t=-1 AND t_d_a=-2) OR (t_d_t=-1 AND t_d_y=1) OR (t_d_y=1 AND t_d_b=2);
SELECT t5.user_id user_id, t5.data_dt data_dt, t5.low_carbon low_carbon FROM
(SELECT user_id, REGEXP_REPLACE(today,'-','/') data_dt from
(select user_id,today,DATEDIFF(today,yesterday)t_d_y,DATEDIFF(today,before_yesterday)t_d_b,
DATEDIFF(today,tomorrow)t_d_t,DATEDIFF(today,after_tomorrow)t_d_a from
(select user_id,today ,
LAG(today,1,'1970-1-1')over(PARTITION by user_id order by today) yesterday,
LAG(today,2,'1970-1-1')over(PARTITION by user_id order by today) before_yesterday,
LEAD(today,1,'1970-1-1')over(PARTITION by user_id order by today) tomorrow,
LEAD(today,2,'1970-1-1')over(PARTITION by user_id order by today) after_tomorrow from
(select user_id, regexp_replace(data_dt,'/','-') today,sum(low_carbon) sum_day_low_carbon from
user_low_carbon where year(regexp_replace(data_dt,'/','-'))=2017
group by user_id,data_dt having sum_day_low_carbon>100)t1)t2)t3
where (t_d_t=-1 AND t_d_a=-2) OR (t_d_t=-1 AND t_d_y=1) OR (t_d_y=1 AND t_d_b=2))t4
left join user_low_carbon t5 on t4.user_id=t5.user_id and t4.data_dt=t5.data_dt