支持向量机的特点,优点缺点

 

特点 :

  1. 支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
  2. SVM的目标是对特征空间划分得到最优超平面,SVM方法核心是最大化分类边界。
  3. SVM方法的理论基础是非线性映射,SVM利用内积核函数代替向高维空间的非线性映射。
  4. SVM是一种有坚实理论基础的新颖的适用小样本学习方法。它基本上不涉及概率测度及大数定律等,也简化了通常的分类和回归等问题。
  5. SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
  6. 少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒性”。这种鲁棒性主要体现在: ​ ①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性;③有些成功的应用中,SVM方法对核的选取不敏感
  7.  SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解
  8. SVM通过最大化决策边界的边缘来控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。
  9. SVM在小样本训练集上能够得到比其它算法好很多的结果。SVM优化目标是结构化风险最小,而不是经验风险最小,避免了过拟合问题,通过margin的概念,得到对数据分布的结构化描述,减低了对数据规模和数据分布的要求,有优秀的泛化能力。
  10.  它是一个凸优化问题,因此局部最优解一定是全局最优解的优点。

优点: 

  1. SVM是一种有坚实理论基础的新颖的适用小样本学习方法。它基本上不涉及概率测度及大数定律等,也简化了通常的分类和回归等问题
  2.  计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
  3. 少数支持向量决定了最终结果,对异常值不敏感, 这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒性”
  4. SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值,
  5. 有优秀的泛化能力。

 

缺点:

1.对大规模训练样本难以实施

​ SVM的空间消耗主要是存储训练样本和核矩阵,由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。
​ 如果数据量很大,SVM的训练时间就会比较长,如垃圾邮件的分类检测,没有使用SVM分类器,而是使用简单的朴素贝叶斯分类器,或者是使用逻辑回归模型分类。

2.解决多分类问题困难,

经典的支持向量机算法只给出了二类分类的算法,而在实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗糙集理论结合,形成一种优势互补的多类问题的组合分类器。

3.对参数和核函数选择敏感 

​ 支持向量机性能的优劣主要取决于核函数的选取,所以对于一个实际问题而言,如何根据实际的数据模型选择合适的核函数从而构造SVM算法。目前比较成熟的核函数及其参数的选择都是人为的,根据经验来选取的,带有一定的随意性。在不同的问题领域,核函数应当具有不同的形式和参数,所以在选取时候应该将领域知识引入进来,但是目前还没有好的方法来解决核函数的选取问题。


 

你可能感兴趣的:(深度学习500问)