TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)

文章目录

  • 一、使用Tensorboard显示网络结构
  • 二、使用Tensorboard显示网络运行时的数据
  • 三、使用Tensorboard可视化训练过程

一、使用Tensorboard显示网络结构

因为只是为了显示网络结构,故只训练一次就好,不要浪费时间。

首先要定义命名空间

#命名空间
with tf.name_scope('input'):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

然后在会话里添加下面代码,为保存的路径。

    writer = tf.summary.FileWriter('logs/', sess.graph)

完整代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#命名空间
with tf.name_scope('input'):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

# 创建一个简单的神经网络
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x, W) + b)

#交叉熵代价函数(cross-entropy)和softmax搭配
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

init = tf.global_variables_initializer()

# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # cast把布尔类型转成浮点型,True为1.0,False为0

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/', sess.graph)
    for epoch in range(1):  # 训练1个周期
        for batch in range(n_batch):  # 训练所有的图片一次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # 获取batch_size大小的图片
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

        test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels})

        print("epoch: " + str(epoch) + ",Training Accuracy: " + str(train_acc) + ",Testing Accuracy: " + str(test_acc))

训练完得到下面文件:
TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第1张图片
window下在logs的目录下打开命令行(shift+鼠标右键),输入以下代码

tensorboard --logdir logs --host=127.0.0.1

在这里插入图片描述
回车,然后得出
TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第2张图片
然后在谷歌浏览器上输入:

 http://127.0.0.1:6006

TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第3张图片
此时的网络结构图阅读性不高,因此继续修改。
完整代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#命名空间
with tf.name_scope('input'):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

with tf.name_scope('layer'):
    # 创建一个简单的神经网络
    with tf.name_scope('wights'):
        W = tf.Variable(tf.zeros([784, 10]))
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]))
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
        prediction = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    #交叉熵代价函数(cross-entropy)和softmax搭配
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
with tf.name_scope('train'):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        # 结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        # 求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # cast把布尔类型转成浮点型,True为1.0,False为0

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/', sess.graph)
    for epoch in range(1):  # 训练1个周期
        for batch in range(n_batch):  # 训练所有的图片一次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # 获取batch_size大小的图片
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

        test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels})

        print("epoch: " + str(epoch) + ",Training Accuracy: " + str(train_acc) + ",Testing Accuracy: " + str(test_acc))

TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第4张图片
这样阅读性更高了。

二、使用Tensorboard显示网络运行时的数据

首先定义一个计算函数,用来计算查看权值W和偏置值b的信息:

def variable_summaries(var):
    with tf.name_scope('sumaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean) #平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev) #标准差
        tf.summary.scalar('max', tf.reduce_max(var)) #最大值
        tf.summary.scalar('min', tf.reduce_min(var)) #最小值
        tf.summary.histogram('histogram', var) #直方图

在W,b 的空间窗口下分别加入:

        variable_summaries(W)
        
        variable_summaries(b)

在loss的空间窗口下加入:

    tf.summary.scalar('loss', loss)

在accuracy的空间窗口下加入:

        tf.summary.scalar('accuracy', accuracy)

然后加入汇总:

#合并所有的summary
merged = tf.summary.merge_all()

然后在会话里修改:

 summary,_ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys}) #merged 会有返回值,存在summary里面

 writer.add_summary(summary, epoch)

完整代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

def variable_summaries(var):
    with tf.name_scope('sumaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean) #平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev) #标准差
        tf.summary.scalar('max', tf.reduce_max(var)) #最大值
        tf.summary.scalar('min', tf.reduce_min(var)) #最小值
        tf.summary.histogram('histogram', var) #直方图


#命名空间
with tf.name_scope('input'):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

with tf.name_scope('layer'):
    # 创建一个简单的神经网络
    with tf.name_scope('wights'):
        W = tf.Variable(tf.zeros([784, 10]))
        variable_summaries(W)
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]))
        variable_summaries(b)
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
        prediction = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    #交叉熵代价函数(cross-entropy)和softmax搭配
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
    # 使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        # 结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        # 求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # cast把布尔类型转成浮点型,True为1.0,False为0
        tf.summary.scalar('accuracy', accuracy)

#合并所有的summary
merged = tf.summary.merge_all()

with tf.Session() as sess:
    sess.run(init)
    writer = tf.summary.FileWriter('logs/', sess.graph)
    for epoch in range(51):  # 训练1个周期
        for batch in range(n_batch):  # 训练所有的图片一次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # 获取batch_size大小的图片
            summary,_ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys}) #merged 会有返回值,存在summary里面

        writer.add_summary(summary, epoch)

        test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels})

        print("epoch: " + str(epoch) + ",Training Accuracy: " + str(train_acc) + ",Testing Accuracy: " + str(test_acc))

然后打开:http://127.0.0.1:6006
可以看到:
TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第5张图片
TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第6张图片

三、使用Tensorboard可视化训练过程

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector

#载入数据集
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
#运行次数
max_steps = 1001
#图片数量
image_num = 3000
#当前py文件路径
DIR = "D:/Tensorflow/"

#定义会话
sess = tf.Session()

#载入图片
embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding')

#参数概要
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean)#平均值
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev)#标准差
        tf.summary.scalar('max', tf.reduce_max(var))#最大值
        tf.summary.scalar('min', tf.reduce_min(var))#最小值
        tf.summary.histogram('histogram', var)#直方图

#命名空间
with tf.name_scope('input'):
    #这里的none表示第一个维度可以是任意的长度
    x = tf.placeholder(tf.float32,[None,784],name='x-input')
    #正确的标签
    y = tf.placeholder(tf.float32,[None,10],name='y-input')

#显示图片
with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)

with tf.name_scope('layer'):
    #创建一个简单神经网络
    with tf.name_scope('weights'):
        W = tf.Variable(tf.zeros([784,10]),name='W')
        variable_summaries(W)
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]),name='b')
        variable_summaries(b)
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x,W) + b
    with tf.name_scope('softmax'):    
        prediction = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    #交叉熵代价函数
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

#初始化变量
sess.run(tf.global_variables_initializer())

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        #结果存放在一个布尔型列表中
        correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    with tf.name_scope('accuracy'):
        #求准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
        tf.summary.scalar('accuracy',accuracy)

#产生metadata文件
if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'):
    tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv')
with open(DIR + 'projector/projector/metadata.tsv', 'w') as f:
    labels = sess.run(tf.argmax(mnist.test.labels[:],1))
    for i in range(image_num):   
        f.write(str(labels[i]) + '\n')        
        
#合并所有的summary
merged = tf.summary.merge_all()   


projector_writer = tf.summary.FileWriter(DIR + 'projector/projector',sess.graph)
saver = tf.train.Saver()
config = projector.ProjectorConfig()
embed = config.embeddings.add()
embed.tensor_name = embedding.name
embed.metadata_path = DIR + 'projector/projector/metadata.tsv'
embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png'
embed.sprite.single_image_dim.extend([28,28])
projector.visualize_embeddings(projector_writer,config)

for i in range(max_steps):
    #每个批次100个样本
    batch_xs,batch_ys = mnist.train.next_batch(100)
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys},options=run_options,run_metadata=run_metadata)
    projector_writer.add_run_metadata(run_metadata, 'step%03d' % i)
    projector_writer.add_summary(summary, i)
    
    if i%100 == 0:
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print ("Iter " + str(i) + ", Testing Accuracy= " + str(acc))

saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps)
projector_writer.close()
sess.close()

TensorFlow1.0系统学习(五)————Tensorboard的使用(显示网络结构,各种数据,可视化训练过程)_第7张图片

你可能感兴趣的:(TensorFlow)