Q(这个题提交失败,但样例是对的QAQ,好像服务器有问题,不能提交)

Description

Karafs is some kind of vegetable in shape of an 1 × h rectangle. Tavaspolis people love Karafs and they use Karafs in almost any kind of food. Tavas, himself, is crazy about Karafs.

Q(这个题提交失败,但样例是对的QAQ,好像服务器有问题,不能提交)_第1张图片

Each Karafs has a positive integer height. Tavas has an infinite 1-based sequence of Karafses. The height of the i-th Karafs is si = A + (i - 1) × B.

For a given m, let's define an m-bite operation as decreasing the height of at most m distinct not eaten Karafses by 1. Karafs is considered as eaten when its height becomes zero.

Now SaDDas asks you n queries. In each query he gives you numbers lt and m and you should find the largest number r such that l ≤ r and sequence sl, sl + 1, ..., sr can be eaten by performing m-bite no more than t times or print -1 if there is no such number r.

Input

The first line of input contains three integers AB and n (1 ≤ A, B ≤ 1061 ≤ n ≤ 105).

Next n lines contain information about queries. i-th line contains integers l, t, m (1 ≤ l, t, m ≤ 106) for i-th query.

Output

For each query, print its answer in a single line.

Sample Input

Input
2 1 4
1 5 3
3 3 10
7 10 2
6 4 8
Output
4
-1
8
-1
Input
1 5 2
1 5 10
2 7 4
Output
1

2

题目分析

这个题目蛮难读的,谷歌翻译还不如自己翻译QAQ

现在给你一个以A为基,B为公差的等差数列(无现长),其中有N个询问。 对于N个询问,每个询问有三个元素,l,t,m; 表示我们现在有t次操作,每次可以选择m个数将其都-1. 现在问你能够使得以l为起点,r为终点最远的r,区间【l,r】所有数都减少为0.

解题思路

显然这个终点r越远,需要的操作就越多,其具有单调性,那么我们二分终点。进行判断。 如果当前终点可行,那么让这个终点更远一些,否则就更近一些。

源代码

#include #include #include using namespace std; long long A,B,n; long long get(long long mid) {     return A+(mid-1)*B; } long long gs(long long l,long long r) {     long long rr=(A+A+(r-1)*B)*r/2;     long long lll=(A+A+(l-2)*B)*(l-1)/2;     return rr-lll; } int main() {     while(~scanf("%I64d%I64d%I64d",&A,&B,&n))     {         for(long long i=0;i=0)             {                 long long  mid=(right+left)/2;                 if(get(mid)>t)right=mid-1;                 else                 {                     if(gs(s,mid)>m*t)                     {                         right=mid-1;                     }                     else                     {                         ans=mid;                         left=mid+1;                     }                 }             }             printf("%d\n",ans);         }     } }

你可能感兴趣的:(二分贪心练习)