社区发现算法之——Louvain

1、什么是社区

如果一张图是对一片区域的描述的话,我们将这张图划分为很多个子图。当子图之内满足关联性尽可能大,而子图之间关联性尽可能低时,这样的子图我们可以称之为一个社区。

2、社区发现算法及评价标准

社区发现算法有很多,例如LPA,HANP,SLPA以及我们今天的主人公——Louvain。不同的算法划分社区的效果不尽相同。那么,如何评价这些算法孰优孰劣呢?
用模块度modularity来衡量。模块度定义如下:模块度是评估一个社区网络划分好坏的度量方法,它的物理含义是社区内节点的连边数与随机情况下的边数只差,它的取值范围是 [−1/2,1)。可以简单地理解为社区内部所有边权重和减去与社区相连的边权重和。
社区发现算法之——Louvain_第1张图片

Louvain算法

一种基于模块度的图算法模型,与普通的基于模块度和模块度增益不同的是,该算法速度很快,而且对一些点多边少的图,进行聚类效果特别明显。
算法流程:
1、初始时将每个顶点当作一个社区,社区个数与顶点个数相同。
2、依次将每个顶点与之相邻顶点合并在一起,计算它们的模块度增益是否大于0,如果大于0,就将该结点放入该相邻结点所在社区。
3、迭代第二步,直至算法稳定,即所有顶点所属社区不再变化。
4、将各个社区所有节点压缩成为一个结点,社区内点的权重转化为新结点环的权重,社区间权重转化为新结点边的权重。
5、重复步骤1-3,直至算法稳定。

# coding=utf-8
import collections
import random

def load_graph(path):
    G = collections.defaultdict(dict)
    with open(path) as text:
        for line in text:
            vertices = line.strip().split()
            v_i = int(vertices[0])
            v_j = int(vertices[1])
            w = float(vertices[2])
            G[v_i][v_j] = w
            G[v_j][v_i] = w
    return G

class Vertex():
    def __init__(self, vid, cid, nodes, k_in=0):
        self._vid = vid
        self._cid = cid
        self._nodes = nodes
        self._kin = k_in  # 结点内部的边的权重

class Louvain():
    def __init__(self, G):
        self._G = G
        self._m = 0  # 边数量
        self._cid_vertices = {}  # 需维护的关于社区的信息(社区编号,其中包含的结点编号的集合)
        self._vid_vertex = {}  # 需维护的关于结点的信息(结点编号,相应的Vertex实例)
        for vid in self._G.keys():
            self._cid_vertices[vid] = set([vid])
            self._vid_vertex[vid] = Vertex(vid, vid, set([vid]))
            self._m += sum([1 for neighbor in self._G[vid].keys() if neighbor > vid])

    def first_stage(self):
        mod_inc = False  # 用于判断算法是否可终止
        visit_sequence = self._G.keys()
        random.shuffle(list(visit_sequence))
        while True:
            can_stop = True  # 第一阶段是否可终止
            for v_vid in visit_sequence:
                v_cid = self._vid_vertex[v_vid]._cid
                k_v = sum(self._G[v_vid].values()) + self._vid_vertex[v_vid]._kin
                cid_Q = {}
                for w_vid in self._G[v_vid].keys():
                    w_cid = self._vid_vertex[w_vid]._cid
                    if w_cid in cid_Q:
                        continue
                    else:
                        tot = sum(
                            [sum(self._G[k].values()) + self._vid_vertex[k]._kin for k in self._cid_vertices[w_cid]])
                        if w_cid == v_cid:
                            tot -= k_v
                        k_v_in = sum([v for k, v in self._G[v_vid].items() if k in self._cid_vertices[w_cid]])
                        delta_Q = k_v_in - k_v * tot / self._m  # 由于只需要知道delta_Q的正负,所以少乘了1/(2*self._m)
                        cid_Q[w_cid] = delta_Q

                cid, max_delta_Q = sorted(cid_Q.items(), key=lambda item: item[1], reverse=True)[0]
                if max_delta_Q > 0.0 and cid != v_cid:
                    self._vid_vertex[v_vid]._cid = cid
                    self._cid_vertices[cid].add(v_vid)
                    self._cid_vertices[v_cid].remove(v_vid)
                    can_stop = False
                    mod_inc = True
            if can_stop:
                break
        return mod_inc

    def second_stage(self):
        cid_vertices = {}
        vid_vertex = {}
        for cid, vertices in self._cid_vertices.items():
            if len(vertices) == 0:
                continue
            new_vertex = Vertex(cid, cid, set())
            for vid in vertices:
                new_vertex._nodes.update(self._vid_vertex[vid]._nodes)
                new_vertex._kin += self._vid_vertex[vid]._kin
                for k, v in self._G[vid].items():
                    if k in vertices:
                        new_vertex._kin += v / 2.0
            cid_vertices[cid] = set([cid])
            vid_vertex[cid] = new_vertex

        G = collections.defaultdict(dict)
        for cid1, vertices1 in self._cid_vertices.items():
            if len(vertices1) == 0:
                continue
            for cid2, vertices2 in self._cid_vertices.items():
                if cid2 <= cid1 or len(vertices2) == 0:
                    continue
                edge_weight = 0.0
                for vid in vertices1:
                    for k, v in self._G[vid].items():
                        if k in vertices2:
                            edge_weight += v
                if edge_weight != 0:
                    G[cid1][cid2] = edge_weight
                    G[cid2][cid1] = edge_weight

        self._cid_vertices = cid_vertices
        self._vid_vertex = vid_vertex
        self._G = G

    def get_communities(self):
        communities = []
        for vertices in self._cid_vertices.values():
            if len(vertices) != 0:
                c = set()
                for vid in vertices:
                    c.update(self._vid_vertex[vid]._nodes)
                communities.append(c)
        return communities

    def execute(self):
        iter_time = 1
        while True:
            iter_time += 1
            mod_inc = self.first_stage()
            if mod_inc:
                self.second_stage()
            else:
                break
        return self.get_communities()

if __name__ == '__main__':
    G = load_graph(r'C:\\Users\\程勇\\Desktop\\similarity.txt')
    algorithm = Louvain(G)
    communities = algorithm.execute()
    # 按照社区大小从大到小排序输出
    communities = sorted(communities, key=lambda b: -len(b)) # 按社区大小排序
    count = 0
    for communitie in communities:
        count += 1
        print("社区", count, " ", communitie)
    

测试用例文件如图:
社区发现算法之——Louvain_第2张图片
这是部分测试用例的截图,一行的前两个数是顶点编号,第三个数是权重。按照每个社区大小顺序从大到小打印:
社区发现算法之——Louvain_第3张图片
\quad 需要测试文件的话在评论区留下你的邮箱哦,求关注~

你可能感兴趣的:(NLP)