- Flume定义
- Flume模型
Source用于采集数据源的数据,然后封装成Event传输给Channel管道,期间也可以设置过滤器
Chanel接受来自Source传输过来的Event数据
Sink在Channel中拉取Event数据并将数输出,将数据写入存储设备上。
Event:有可以选的Header和载有数据的ByteAarry组成,Header是容纳了Key-value字符串对的无序集合,key在集合内是唯一的。Header可以在上线文路由中扩展。
- Flume的优点
- Flume架构介绍
Flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。
agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。
source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。
channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。
sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、hbase、solr、自定义。
4、flume的运行机制
flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据的输入——source,一个是数据的输出sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方—-例如HDFS等,注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。
5、flume的广义用法
flume之所以这么神奇—-其原因也在于flume可以支持多级flume的agent,即flume可以前后相继,例如sink可以将数据写到下一个agent的source中,这样的话就可以连成串了,可以整体处理了。flume还支持扇入(fan-in)、扇出(fan-out)。所谓扇入就是source可以接受多个输入,所谓扇出就是sink可以将数据输出多个目的地destination中。
接下来对Flume进行应用与测试
- Flume应用——日志采集
1.案例一:Spooling Directory Source:监听一个知道你目录,即只要应用程序向这个指定的目录中添加新的文件,sourre组件就可以获取到该信息,并解析该文件的内容,然后写入到channel。写入完成后,标记该文文件写入完成后,标记该文件已完成或者删除该文件。其中channel为file类型,sink为hdfs存储类型。
①、Flume官网中Spooling Directory Source描述
Property Name Default Description
channels –
type – The component type name, needs to be spooldir.
spoolDir – Spooling Directory Source监听的目录
fileSuffix .COMPLETED 文件内容写入到channel之后,标记该文件
deletePolicy never 文件内容写入到channel之后的删除策略: never or immediate
fileHeader false Whether to add a header storing the absolute path filename.
ignorePattern ^$ Regular expression specifying which files to ignore (skip)
interceptors – 指定传输中event的head(头信息),常用timestamp
②、Spooling Directory Source的两个注意事项:
①If a file is written to after being placed into the spooling directory, Flume will print an error to its log file and stop processing.
即:拷贝到spool目录下的文件不可以再打开编辑
②If a file name is reused at a later time, Flume will print an error to its log file and stop processing.
即:不能将具有相同文件名字的文件拷贝到这个目录下
③、编写配置文件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
a1.sources.r1.type=spooldir
a1.sources.r1.spoolDir=/LogForFlumeCollect
a1.sources.r1.fileHeader=true
a1.sources.r1.interceptors=i1
a1.sources.r1.interceptors.i1.type=timestamp
a1.channels.c1.type=file
a1.channels.c1.checkpointDir=/LogForFlume/checkPoints
a1.channels.c1.dataDirs=/LogForFlume/datas
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/FlumeForSpoolDir
a1.sinks.k1.hdfs.writeFormat=text
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.rollInterval=60
a1.sinks.k1.hdfs.rollSize=10485760
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.filePrefix=/spoolDir-%Y%m%d
a1.sinks.k1.hdfs.useLocalTimeStamp=true
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1
④、启动Flume agent a1服务端
flume-ng agent -c . -f spoolDirForFileToHdfs.conf -n a1 -Dflume.root.logger=INFO,console
⑤、使用cp命令向Spooling Directory 中发送数据
cp student.txt /LogForFlumeCollect/
⑥在控制台将收到到日志信息,并且在hdfs上会生成按配置文件规定的日志文件
2019-02-20 22:00:44,379 (hdfs-k1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:393)] Closing /FlumeForSpoolDir//spoolDir-20190220.1550728784201.tmp
2019-02-20 22:00:44,416 (hdfs-k1-call-runner-4) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:655)] Renaming /FlumeForSpoolDir/spoolDir-20190220.1550728784201.tmp to /FlumeForSpoolDir/spoolDir-20190220.1550728784201
2019-02-20 22:00:44,461 (hdfs-k1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.HDFSEventSink$1.run(HDFSEventSink.java:382)] Writer callback called.
bailing@master:/opt$ hdfs dfs -ls /FlumeForSpoolDir
Found 2 items
-rw-r--r-- 3 bailing supergroup 1 2019-02-20 21:55 /FlumeForSpoolDir/spoolDir-20190220.1550728464520
-rw-r--r-- 3 bailing supergroup 204 2019-02-20 22:00 /FlumeForSpoolDir/spoolDir-20190220.1550728784201
bailing@master:/opt$ hdfs dfs -cat /FlumeForSpoolDir/spoolDir-20190220.1550728784201
54993,2016-11-2,2018-11-14,man,30
64993,2006-01-2,2008-10-24,man,31
24993,2006-12-2,2028-09-04,man,32
44993,2008-01-2,2038-08-21,man,33
14993,2010-11-2,2001-07-25,man,34
74993,2009-11-5,2004-06-26,man,35
2.案例二:Spooling Directory Source:监听一个知道你目录,即只要应用程序向这个指定的目录中添加新的文件,sourre组件就可以获取到该信息,并解析该文件的内容,然后写入到channel。写入完成后,标记该文文件写入完成后,标记该文件已完成或者删除该文件。其中channel为memory类型,sink为local本地存储类型。(相对于案例一两个变化,channel类型,sink落地文件目录)
①、编写配置文件
a1.sources=r1
a1.channels=c1
a1.sinks=k2
a1.sources.r1.type=spooldir
a1.sources.r1.spoolDir=/LogForFlumeCollectLocal
a1.sources.r1.fileHeader=true
a1.sources.r1.interceptors=i1
a1.sources.r1.interceptors.i1.type=timestamp
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=1000
a1.sinks.k2.type=file_roll
a1.sinks.k2.sink.directory=/FlumeLogsToLocal
a1.sources.r1.channels=c1
a1.sinks.k2.channel=c1
②、启动Flume agent a1服务端
flume-ng agent -c . -f spoolDirForFileToHdfs.conf -n a1 -Dflume.root.logger=INFO,console
③、使用cp命令向Spooling Directory 中发送数据
cp student.txt /LogForFlumeCollect/
④、在控制台将收到到日志信息,并且在hdfs上会生成按配置文件规定的日志文件
2019-02-20 22:59:03,517 (pool-3-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.readEvents(ReliableSpoolingFileEventReader.java:324)] Last read took us just up to a file boundary. Rolling to the next file, if there is one.
2019-02-20 22:59:03,523 (pool-3-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:433)] Preparing to move file /LogForFlumeCollectLocal/student.txt to /LogForFlumeCollectLocal/student.txt.COMPLETED
3.案例三:NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink为hdfs,Channel为memory。
①Flume官网中NetCat Source描述:
Property Name Default Description
channels –
type – The component type name, needs to be netcat
bind – 日志需要发送到的主机名或者Ip地址,该主机运行着netcat类型的source在监听
port – 日志需要发送到的端口号,该端口号要有netcat类型的source在监听
②配置文件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
a1.sources.r1.type=netcat
a1.sources.r1.bind=192.168.2.159
a1.sources.r1.port=55555
a1.sources.r1.max-line-lenght=100000
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=1000
a1.channels.c1.keep-alive=30
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/netcatFlume
a1.sinks.k1.hdfs.filePrefix=%Y%m%d-
a1.sinks.k1.hdfs.writeFormat=text
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.rollSize=10485760
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.rollInterval=60
a1.sinks.k1.hdfs.useLocalTimeStamp=true
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1
③、启动Flume agent a1服务端
bailing@master:/opt/flume/conf$ flume-ng agent -c . -f FlumeNetcatToHdfs.conf -n a1 -Dflume.root.logger=INFO,console
④、向指定端口发送数据
bailing@master:/LogForFlumeCollectLocal$ telnet 192.168.2.159 55555
Trying 192.168.2.159...
Connected to 192.168.2.159.
Escape character is '^]'.
big data
OK
⑤、在控制台将收到到日志信息,并且在hdfs上会生成按配置文件规定的日志文件
2019-02-20 23:46:53,579 (lifecycleSupervisor-1-1) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SINK, name: k1 started
2019-02-20 23:46:53,582 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:166)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/192.168.2.159:55555]
2019-02-20 23:46:59,761 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:57)] Serializer = TEXT, UseRawLocalFileSystem = false
2019-02-20 23:47:00,302 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:251)] Creating /netcatFlume/20190220-.1550735219762.tmp
4.案例四:NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink为file_roll,Channel为file。(于案例三发生两处变化,sink落地文件在local,channel类型为file)
①、配置文件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
a1.sources.r1.type=netcat
a1.sources.r1.bind=192.168.2.159
a1.sources.r1.port=55555
a1.sources.r1.max-line-lenght=100000
a1.channels.c1.type=file
a1.channels.c1.checkpointDir=/flume/checkpointDir
a1.channels.c1.dataDirs=/flume/dataDir
a1.sinks.k1.type=file_roll
a1.sinks.k1.sink.directory=/location
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1
②、启动Flume agent a1服务端
bailing@master:/opt/flume/conf$ flume-ng agent -c . -f FlumeNetcatToHdfs.conf -n a1 -Dflume.root.logger=INFO,console
③、向指定端口发送数据
bailing@master:/$ telnet 192.168.2.159 55555
Trying 192.168.2.159...
Connected to 192.168.2.159.
Escape character is '^]'.
flume test
OK
④、在控制台将收到到日志信息,并且在hdfs上会生成按配置文件规定的日志文件
2019-02-21 02:02:13,779 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.beginCheckpoint(EventQueueBackingStoreFile.java:230)] Start checkpoint for /home/bailing/.flume/file-channel/checkpoint/checkpoint, elements to sync = 1
2019-02-21 02:02:13,795 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.checkpoint(EventQueueBackingStoreFile.java:255)] Updating checkpoint metadata: logWriteOrderID: 1550743304143, queueSize: 1, queueHead: 999999
2019-02-21 02:02:13,811 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.Log.writeCheckpoint(Log.java:1065)] Updated checkpoint for file: /home/bailing/.flume/file-channel/data/log-1 position: 91 logWriteOrderID: 1550743304143
2019-02-21 02:02:43,818 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.beginCheckpoint(EventQueueBackingStoreFile.java:230)] Start checkpoint for /home/bailing/.flume/file-channel/checkpoint/checkpoint, elements to sync = 1
2019-02-21 02:02:43,819 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.checkpoint(EventQueueBackingStoreFile.java:255)] Updating checkpoint metadata: logWriteOrderID: 1550743304146, queueSize: 0, queueHead: 0
2019-02-21 02:02:43,821 (Log-BackgroundWorker-c1) [INFO - org.apache.flume.channel.file.Log.writeCheckpoint(Log.java:1065)] Updated checkpoint for file: /home/bailing/.flume/file-channel/data/log-1 position: 168 logWriteOrderID: 1550743304146
⑤、查看本地sink落地文件
bailing@master:/location$ ls
1550744413761-1 1550744413761-2 1550744413761-3
bailing@master:/location$ cat *
flume test
bailing@master:/location$
5.案例五:Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 其中 Sink:hdfs Channel:channel .这个案列为了方便显示Exec Source的运行效果,结合Hive中的external table进行来说明。
①、配置文件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
a1.sources.r1.type=exec
a1.sources.r1.command=tail -F /flume/listen.txt
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=1000
a1.channels.c1.keep-alive=30
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/NetcatFlumeHive
a1.sinks.k1.hdfs.rollSize=10485760
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.rollInterval=60
a1.sinks.k1.hdfs.writeFormat=text
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.filePrefix=%Y%m%d-
a1.sinks.k1.hdfs.useLocalTimeStamp=true
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1
②、在hive中创建外部表并且指定location
hive (default)> create table test(
> text string)
> row format delimited
> location "/NetcatFlumeHive";
OK
Time taken: 1.459 seconds
③、启动flume agent a1 服务端:
bailing@master:/opt/flume/conf$ flume-ng agent -c . -f exec.conf -n a1 -Dflume.root.logger=INFO,console
④、向/flume/listen.txt中发送数据
echo "flume exec" >> listen.txt
⑤、在HDFS和Hive分别中查看flume收集到的日志数据:
hive (default)> select * from test;
OK
test.text
flume exec
Time taken: 1.03 seconds, Fetched: 1 row(s)
bailing@master:/flume$ hdfs dfs -cat /NetcatFlumeHive/20190221-.1550802462481
flume exec
6、案例六:Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 其中 Sink:file_roll Channel:file .这个案列为了方便显示Exec Source的运行效果,结合Hive中的external table进行来说明。(与案例的发生两个不同,发送数据和查看结果不变)
配置文件:
a1.sources=r1
a1.channels=c1
a1.sinks=k1
a1.sources.r1.type=exec
a1.sources.r1.command=tail -F /flume/listen.txt
a1.channels.c1.type=file
a1.channels.c1.checkpointDir=/flume/checkpointDir
a1.channels.c1.dataDir=/flume/dataDir
a1.sinks.k1.type=file_roll
a1.sinks.k1.sink.directory=/location
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1
7.案例七:Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。 其中 Sink:hdfs Channel:file (注:Avro和Thrift都是一些序列化的网络端口–通过这些网络端口可以接受或者发送信息,Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制)。
①、Flume官网中Avro Source的描述:
Property Name Default Description
channels –
type – The component type name, needs to be avro
bind – 日志需要发送到的主机名或者ip,该主机运行着ARVO类型的source
port – 日志需要发送到的端口号,该端口要有ARVO类型的source在监听
②配置文件
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.2.159
a1.sources.r1.port = 55555
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path =/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
③、启动flume agent a1 服务端
flume-ng agent -c . -f avroFlume.conf -n a1 -Dflume.root.logger=INFO,console
④、使用avro-client发送文件
flume-ng avro-client -c . -H 192.168.2.159 -p55555 -F /location/test.txt
⑤、在控制台将收到到日志信息,并且在hdfs上会生成按配置文件规定的日
bailing@master:~$ hdfs dfs -ls /dataoutput
Found 7 items
-rw-r--r-- 3 bailing supergroup 9 2019-02-19 18:17 /dataoutput/2019-02-19-18-17-11.1550629031059
-rw-r--r-- 3 bailing supergroup 18 2019-02-19 18:17 /dataoutput/2019-02-19-18-17-13.1550629033682
-rw-r--r-- 3 bailing supergroup 9 2019-02-19 18:17 /dataoutput/2019-02-19-18-17-15.1550629035102
-rw-r--r-- 3 bailing supergroup 11 2019-02-21 19:28 /dataoutput/2019-02-21-19-28-12.1550806092252
-rw-r--r-- 3 bailing supergroup 9 2019-02-21 19:48 /dataoutput/2019-02-21-19-48-31.1550807311274
-rw-r--r-- 3 bailing supergroup 9 2019-02-20 01:23 /dataoutput/20190220-.1550654583919
-rw-r--r-- 3 bailing supergroup 9 2019-02-20 01:23 /dataoutput/20190220-.1550654583920
志文件