import cv2
import sys
from PIL import Image
def CatchPICFromVideo(window_name, catch_pic_num, path_name):
cv2.namedWindow(window_name)
# 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
# 注意这里要进行修改,改成你自己的视频地址
cap = cv2.VideoCapture("/home/dong/Videos/dong/4.mp4")
# 告诉OpenCV使用人脸识别分类器,我上一篇博客有介绍,怎么找到你分类器的位置
classfier = cv2.CascadeClassifier("/home/dong/PycharmProjects/untitled/venv/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_alt2.xml")
# 识别出人脸后要画的边框的颜色,RGB格式
color = (0, 255, 0)
b = 0
num = 0
while cap.isOpened():
ok, frame = cap.read() # 读取一帧数据
if not ok:
break
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 将当前桢图像转换成灰度图像
# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数,如果识别效果不太好,可以增大minNeighbors
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0: # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 将当前帧保存为图片
img_name = '%s/%d.jpg' % (path_name, num+996)
image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
cv2.imwrite(img_name, image)
num += 1
if num > (catch_pic_num): # 如果超过指定最大保存数量退出循环
break
# 画出矩形框
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
# 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, 'num:%d' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)
# 超过指定最大保存数量结束程序
if num > (catch_pic_num): break
# 显示图像
cv2.imshow(window_name, frame)
c = cv2.waitKey(10)
if c & 0xFF == ord('q'):
break
if __name__ == '__main__':
CatchPICFromVideo("截取人脸", int(1000), "/home/dong/PycharmProjects/untitled/人脸识别/data/me/")
我这里只对两个人的人脸进行训练,所以需要两个人的人脸模型,
我的模型如下