你们会选择哪种深度学习开源框架?Pytorch还是Caffe、TensorFlow?各家的优缺点都有哪些?

柏视医疗董事长陆遥:快速验证模型效果使用Pytorch,工业化部署使用TensorFlow。

TensorFlow: TensorFlow提供全面的服务,无论是Python,C++,JAVA,Go,甚至是JavaScript,Julia,C#;TensorFlow良好的文档和社区支持,大大降低了学习成本;提供直观的可视化计算图;模型能够快速的部署在各种硬件机器上,从高性能的计算机到移动设备,再到更小的更轻量的智能终端。但构建TensorFlow深度学习框架需要更复杂的代码,还要重复地多次构建静态图。不过到2.0以后,tensorflow将keras融合进来,很多操作都简化了。

Pytorch:Pytorch的风格和python很像,使用的是动态图,搭建模型比较快,方便调试,能够很快验证方法的有效性,新手上手快,而且库足够简单,跟NumPy、SciPy等可以无缝连接;设计简单,动态地设计网络,而无需定义静态网络图,非常灵活。但pytorch在生产环境部署还不成熟。

Caffe:Caffe 是一个优先考虑表达、速度和模块化来设计的框架。支持 C、C++、Python等接口以及命令行接口。但是,Caffe 不支持精细粒度网络层,给定体系结构,对循环网络和语言建模的总体支持相当差,必须用低级语言建立复杂的层类型,使用门槛很高。虽然开源比Pytorch和Tensorflow要早一点,早期的很多机器视觉的算法是基于Caffe框架,但是Caffe社区比较前两个框架要小很多,更新迭代的也比较慢。

你可能感兴趣的:(你们会选择哪种深度学习开源框架?Pytorch还是Caffe、TensorFlow?各家的优缺点都有哪些?)