spark streaming是spark中用来处理流式数据的,用来对接各类消息队列是极好的。spark streaming并不是真正实时的流式处理,它本质上还是批处理,只是每一个批次间隔的时间很短。
我是用java来写的。跟大佬们的scala不能比,没有scala简洁。。
先是maven需要依赖的spark-kafka包:
org.apache.spark
spark-streaming-kafka-0-10_2.11
2.3.1
org.apache.spark
spark-streaming_2.11
2.3.1
provided
maven的打包组件:
UTF-8
1.8
1.8
org.apache.maven.plugins
maven-shade-plugin
package
shade
org.xxx.TransferApp
${maven.compile.source}
${maven.compile.target}
然后是java代码:
首先是spark的配置信息和kafka的配置信息:
SparkConf conf = new SparkConf();
// conf.setMaster("local[4]");
conf.setMaster("spark://192.168.1.100:7077");
conf.setAppName("transfer App");
conf.set("spark.streaming.stopGracefullyOnShutdown","true");
conf.set("spark.default.parallelism", "6");
SparkSession spark = SparkSession.builder().config(conf).getOrCreate();
JavaSparkContext javaSparkContext = new JavaSparkContext(spark.sparkContext());
JavaStreamingContext jssc = new JavaStreamingContext(javaSparkContext, Durations.seconds(10));
Map kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "192.168.1.101:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "myGroup998");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", true);
这里面conf.set("spark.streaming.stopGracefullyOnShutdown","true");是让streaming任务可以优雅的结束,当把它停止掉的时候,它会执行完当前正在执行的任务。
JavaStreamingContext jssc = new JavaStreamingContext(javaSparkContext, Durations.seconds(10));这个是设置每一个批处理的时间,我这里是设置的10秒,通常可以1秒。。
然后创建主题列表:
Collection topic0 = Arrays.asList("self-topic0");
Collection topic1 = Arrays.asList("self-topic1");
Collection topic2 = Arrays.asList("self-topic2");
Collection topic3 = Arrays.asList("self-topic3");
Collection topic4 = Arrays.asList("self-topic4");
Collection topic5 = Arrays.asList("self-topic5");
List> topics = Arrays.asList(topic0, topic1, topic2, topic3, topic4, topic5);
List>> kafkaStreams = new ArrayList<>(topics.size());
主题列表本来是可以这样的:
Collection topic0 = Arrays.asList("self-topic0","self-topic1","self-topic2");
如果是这样的话,这多个主题会在一个消费者中去接收。而我上面的写法可以让spark更好的并发去处理每一个主题。
最后,就是为每一个主题开一个stream去接收,收完了再把结果union起来。
for (int i = 0; i < topics.size(); i++) {
kafkaStreams.add(KafkaUtils.createDirectStream(
jssc,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics.get(i), kafkaParams)));
}
JavaDStream> stream = jssc.union(kafkaStreams.get(0), kafkaStreams.subList(1, kafkaStreams.size()));
stream.foreachRDD((rdd)->{rdd.foreachPartition((crs)->patchTransfer(crs));});
jssc.start();
try {
jssc.awaitTermination();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
最最后,是启动,和保持运行。
最最最后,用maven打包,命令是mvn package,然后像普通spark应用一样提交。
提交的时候用的是6066的rest接口,7077会报一个不影响运行的小错。jar包要放在所有节点都能拿到的地方,我没有hdfs也没有网络磁盘,就放http服务器里了。。
./spark-submit --deploy-mode cluster --master spark://master:6066 --class xxx.xxx.TransferApp http://server/journalTransfer-1.0.jar
官方的说明文档:http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html
未经允许,禁止转载 https://blog.csdn.net/redstarofsleep
更多内容请关注公众号: