解惑:这个SPARK任务是数据倾斜了吗?

解惑:这个SPARK任务是数据倾斜了吗?_第1张图片

健身前后对比

健身回来的路上,看到微信群里聊技术,一群有问了一个神奇的问题,具体可以看如下截图:

解惑:这个SPARK任务是数据倾斜了吗?_第2张图片

哥们给出的结论是repartition导致的数据倾斜,我给他详细的回复了说明了不是数据倾斜。那么接下来,我们就仔细分析一下原因。

为了大家更彻底的了解这块内容,文章底部浪尖也录制了一个小视频。

解惑:这个SPARK任务是数据倾斜了吗?_第3张图片

那哥们数是repartition导致的数据倾斜原因,是由于前三行数据输入和输出都是好几百兆,而后面的都是只有几个MB的输入,0B输出,所以下结论是数据倾斜。

浪尖纠正他是错的原因是数据倾斜往往指的是同一个stage内部:有的task数据量大,有的task数据量小,task间数据量大小差距比较大,而这个明显不是。这个是executor的页面,可以看complete task列,会发现前三行占据了几乎所有task执行,完成的task数是其余的十几二十倍。这个就是导致前三行输入输出数据量比较大的原因。

数据本地性是导致这个问题的根本原因。由于数据本地性task调度会优先调度到数据所在的executor机器,假如机器executor存在执行中的task会等待一个时间,在这个时间内task执行完,新task会直接调度到该executor上。如此往复,导致executor处理的task差距比较大。

官网给出了关于spark调度task的时候数据本地性降级的等待时间配置。

解惑:这个SPARK任务是数据倾斜了吗?_第4张图片

很简单,将3s设置为0s,然后结果就是task不会等待数据本性降级,就立即调度执行。

其实,根源还是kafka 创建topic的时候 partition数目没有够。单个parition的吞吐量是可以达到数万qps,但是结合业务逻辑,不同的数据输出位置,吞吐量会急剧下降,所以topic分区数,应该根据处理逻辑和落地位置,磁盘数,综合考虑设置。

还有一点就是分析问题不准确,关于spark streaming性能瓶颈分析和解决方法,浪尖在知识星球里做了详细的分析,建议大家加入知识星球。


加入知识星球二维码

640

关于知识星球能学到啥可以阅读

深入系统掌握大数据

微信群,可以加浪尖微信

解惑:这个SPARK任务是数据倾斜了吗?_第5张图片

点个赞吧

你可能感兴趣的:(解惑:这个SPARK任务是数据倾斜了吗?)