Given a set of N (>1) positive integers, you are supposed to partition them into two disjoint sets A1 and A2 of n1 and n2 numbers, respectively. Let S1 and S2 denote the sums of all the numbers in A1 and A2, respectively. You are supposed to make the partition so that ∣n1−n2
∣ is minimized first, and then ∣S1−S2∣ is maximized.
Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤10^5), and then N positive integers follow in the next line, separated by spaces. It is guaranteed that all the integers and their sum are less than 2 ^31.
For each case, print in a line two numbers: ∣n1 −n2∣ and ∣S1−S2∣, separated by exactly one space.
10
23 8 10 99 46 2333 46 1 666 555
0 3611
13
110 79 218 69 3721 100 29 135 2 6 13 5188 85
1 9359
题意:输入n个数,然后将这些数划分为两个子集,然后求n1-n2的绝对值的最小值和s1-s2的绝对值的最大值
思路:排序一下即可
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
int main() {
int n;
scanf("%d",&n);
vector<int> v(n);
for(int i = 0;i < n;i++) {
scanf("%d",&v[i]);
}
sort(v.begin(),v.end());
int sum = 0;
for(int i = 0;i < n;i++) {
sum = sum + v[i];
}
int sum1 = 0;
for(int i = 0;i < n / 2;i++) {
sum1 = sum1 + v[i];
}
printf("%d %d\n",n % 2,sum - 2 * sum1);
return 0;
}