1113 Integer Set Partition (25 分) 排序

Given a set of N (>1) positive integers, you are supposed to partition them into two disjoint sets A​1 and A2 of n1 and n2 numbers, respectively. Let S1 and S2 denote the sums of all the numbers in A1 and A2, respectively. You are supposed to make the partition so that ∣n​1−n​2
​∣ is minimized first, and then ∣S​1−S​2∣ is maximized.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤10^5), and then N positive integers follow in the next line, separated by spaces. It is guaranteed that all the integers and their sum are less than 2 ^​31.

Output Specification:

For each case, print in a line two numbers: ∣n1​​ −n2∣ and ∣S​1−S2∣, separated by exactly one space.

Sample Input 1:

10
23 8 10 99 46 2333 46 1 666 555

Sample Output 1:

0 3611

Sample Input 2:

13
110 79 218 69 3721 100 29 135 2 6 13 5188 85

Sample Output 2:

1 9359

题意:输入n个数,然后将这些数划分为两个子集,然后求n1-n2的绝对值的最小值和s1-s2的绝对值的最大值
思路:排序一下即可

#include
#include
#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include

using namespace std;

int main() {
	int n;
	scanf("%d",&n);
	vector<int> v(n);
	for(int i = 0;i < n;i++) {
		scanf("%d",&v[i]);
	}
	sort(v.begin(),v.end());
	int sum = 0;
	for(int i = 0;i < n;i++) {
		sum = sum + v[i];
	}
	int sum1 = 0;
	for(int i = 0;i < n / 2;i++) {
		sum1 = sum1 + v[i];
	}
	printf("%d %d\n",n % 2,sum - 2 * sum1);
	return 0;
}

你可能感兴趣的:(PAT甲级)