【DL笔记】LeNet5神经网络简介及TensorFlow实现

1.前言

这篇文章是我通过学习黄文坚、唐源所著的《TensorFlow实战》之后的简单总结,通过这本书我对深度学习更加了解,现整理出一部分分享给大家,错误之处可以在评论区指出,以便我加以改正,谢谢!

2.模型特点

LeNet5诞生于1994年,由Yann LeCun提出,充分考虑图像的相关性。当时结构的特点如下:
1)每个卷积层包含三个部分:卷积(Conv)、池化(ave-pooling)、非线性激活函数(sigmoid)
2)MLP作为最终的分类器
3)层与层之间稀疏连接减少计算复杂度

3.结构模型

【DL笔记】LeNet5神经网络简介及TensorFlow实现_第1张图片

4.网络层介绍

Input Layer:1*32*32图像
Conv1 Layer:包含6个卷积核,kernal size:5*5,parameters:(5*5+1)*6=156个
Subsampling Layer:average pooling,size:2*2
                                  Activation Function:sigmoid
Conv3 Layer:包含16个卷积核,kernal size:5*5  ->16个Feature Map
Subsampling Layer:average pooling,size:2*2
Conv5 Layer:包含120个卷积核,kernal size:5*5
Fully Connected Layer:Activation Function:sigmoid
Output Layer:Gaussian connection

5.代码实现

说明一下,原本应该放LeNet5的TensorFlow实现代码,发现LeNet5的模型在现在使用过程中好多地方进行了更改,比如激励函数换做ReLU,采用max pooling等等,因此,我只是简单地进行了一个CNN的TensorFlow代码实现,用的MNIST数据集,代码如下:
import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
sess = tf.InteractiveSession()

def weight_variable(shape):
	initial = tf.truncated_normal(shape,stddev=0.1)
	return tf.Variable(initial)

def bias_variable(shape):
	initial = tf.constant(0.1,shape = shape)
	return tf.Variable(initial)

def conv2d(x,W):
	return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
	return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1])

# Conv1 Layer
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# Conv2 Layer
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

tf.global_variables_initializer().run()
for i in range(20000):
	batch = mnist.train.next_batch(50)
	if i % 1000 == 0:
		train_accuracy = accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})
		print("step %d, training accuracy %g"%(i,train_accuracy))
	train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
在GPU上面训练,大概不到两分钟,准确率99.11%

【DL笔记】LeNet5神经网络简介及TensorFlow实现_第2张图片


注:系统环境:ubuntu、Python3.5.2、TensorFlow1.2.0


你可能感兴趣的:(Deep,Learning,Book,Note,DL学习笔记)