作者:阿里巴巴赵汉青分享,大数据技术与架构整理
大数据技术与架构
点击右侧关注,大数据开发领域最强公众号!
暴走大数据
点击右侧关注,暴走大数据!
By 大数据技术与架构
场景描述:Elasticsearch及相关产品,介绍基于ELK + Kafka 的日志分析系统,Elasticsearch优化经验,阿里云 Elasticsearch服务以及Elasticsearch 运维实践。
关键词:ELK 运维 优化
本次分享是由来自阿里巴巴的高级工程师赵汉青带来的。主要讲述了:
基于ELK + Kafka 的日志分析系统
Elasticsearch 优化经验
Elasticsearch 运维实践
分布式实时分析搜索引擎,优点包括:
查询近实时
内存消耗小,搜索速度快
可扩展性强
高可用
FST(Finite State Transducer)
这种数据结构适用于文本查询。通过对词典中单词前缀和后缀的重复利用,压缩存储空间,压缩比率一般在 3~20 倍之间。O( len ( str )) 的查询时间复杂度。范围搜索,前缀搜索比传统的 hashmap 有明显优势。
BDK Tree
适用于数值型,地理信息( geo )等多维度数据类型。当K=1, 二叉搜索树,查询复杂度 log(N)
K=2, 确定切分维度,切分点选这个维度的中间点
通过索引分片机制,实现集群的横向扩展
通过shard冗余备份,跨可用区部署,数据快照 (snapshot) 。应对集群节点故障,数据损坏。
Kibana : 数据可视化,与 elasticsearch 交互。Elasticsearch: 存储,索引,搜索。Logstash: 数据收集,过滤,转换。Beats: 比 logstash 更轻巧 , 更多样化 : Filebeat, Metricbeat, Packetbeat, Winlogbeat …
提供了大量的用于数据过滤,转换的插件 drop: 丢掉不需要的数据 grok : 正则匹配抓取数据 date : 从数据中解析date属性,用作 Elasticsearch document 的 timestamp metrics: 获取 logstash 的 metrics codec.multiline :多行数据合成一条记录 fingerprint : 防止插入重复的数据
Logstash 缺点:收集 log 效率低,耗资源。Filebeat: 弥补的缺点,但自身插件较少。
Kafka 有数据缓存能力。Kafka 数据可重复消费。Kafka 本身高可用,防止数据丢失。Kafka 的 throughput 更好。Kafka 使用广泛。
实践经验:不同的 service ,创建不同的 topic 。根据 service 的日志量,设定 topic partition 个数。按照 kafka partition 的个数和消费该 topic 的 logstash 的个数,配置 consumer_threads。尽量明确 logstash 和对应消费的 topic ( s) ,配置消费的 topic 少用通配符。
集群规划的基本问题:
1. 总数据量大小:每天流入多少数据,保存多少天数据。
每日增加的数据量:每日新增的 log 量 * 备份个数 。
如果 enable 了 _ all 字段,则在上面的基础上再翻一倍。比如每天新增 1T 的 log ,每个 shard 有 1 个备份, enable_all ,则 Elasticsearch 集群的实际数据增加量约等于 4T 。
如果每天需要存 4T 数据,假如保存 30 天的数据,需要的最低存储是 120T ,一般还会加 20% 的 buffer 。
至少 需要准备 144T 的存储空间。根据日志场景的特点,可做 hot-node, warm - node 划分。
hot-node 通常用 SSD 磁盘, warm-node 采用普通机械盘。
2. 单节点配置:每个节点多少索引,多少 shard ,每个 shard 大小控制在多少。
根据总数据量和单节点配置,得出集群总体规模。
单节点,根据经验通常 CPU :Memory的配比是1:4。
Memory : Disk的配比为 1 : 24 。
Elasticsearch heap 的 xmx 设置通常不大于 32g 。
Memory 和 shard 的配比在 1 : 20 ~ 1:25 之间。
每个shard的大小不超过50g 。
实践案例分析
产线上出现服务 failover , backup 集群日志量会忽然增大, kafka 里的数据量也突然增多,单位时间内 logstash 消费 kafka注入Elasticsearch的数据量也会增大,如果某些正在插入数据的 primary shard 集中在一个node上,该node会因为需要索引的数据量过大、同时响应多个logstash bulk 请求等因素,导致该 node 的 Elasticsearch 服务过于繁忙 。
若无法响应 master 节点发来的请求(比如 cluster health heartbeat), master 节点会因为等待该节点的响应而被 block ,导致别的节点认为 master 节点丢失,从而触发一系列非常反应,比如重选master 。
若无法及时响应 logstash 请求, logstash connect elasticsearch 便会出现 timeout , logstash 会认得这个 Elasticsearch 为 dead ,同时不再消费 kafka 。Kafka 发现在同一个 consumer group 里面某个 consumer 消失了,便会触发整个 consumer group 做 rebalance ,从而影响别的 logstash 的消费,影响整个集群的吞吐量。
典型 羊群效应 ,需要消除头羊带 来的影响。可通过 elasticsearch API: GET/_cat/thread_pool / bulk?v&h =name , host,active,queue,rejected,completed 定位哪个节点比较忙:queue 比较大, rejected 不断增加。然后通过 GET /_cat/shards 找到该 node 上活跃的 shard 。最后再通过 POST /_cluster/reroute API 把 shard 移到 load 比较低的 node 上,缓解该 node 的压力。
我们主要关注:
集群健康状态 2 . 集群索引和搜索性能
节点 cpu , memory, disk 使用情况
集群green ,正常。
集群yellow,主要是有 replica shard 未分配。
集群 red ,是因为有 primary shard 未分配。
主要原因:集群 node disk 使用率超过 watermark ( 默认 85% )。可通过 api GET/_cat/ allocation 查看 node 的磁盘使用率。可通过 api GET/_cluster/ settings 查看 cluster.routing.allocation.enable 是否被禁止。可通过 api GET /_cluster/allocation/explain? pretty 查看 shard 未分配到 node 的具体原因。
监控工具推荐使用:cerebro( https://github.com/lmenezes/cerebro )
提前创建索引
避免索引稀疏,index 中 document 结构最好保持一致,如果 document 结构不一致,建议分 index ,用一个有少量 shard 的 index 存放 field 格式不同的 document 。3 . 在加载大量数据时可设置 refresh_interval =-1 , index.number_of_replicas =0 ,索引完成后再设回 来。4 . load 和 IO 压力不大的情况,用 bulk 比单条的 PUT/DELETE 操作索引效率更高 。5 . 调整 index buffer( indices.memory.index_buffer_size ) 。
不需要 score 的 field ,禁用 norms;不需要 sort 或 aggregate 的 field ,禁用 doc_value 。
使用 routing 提升某一维度数据的查询速度。
避免返回太大量的搜索结果集,用 limit 限制。
如果 heap 压力不大,可适当增加 node query cache( indices.queries.cache.size ) 。
增加 shard 备份可提高查询并发能力,但要注意 node 上的 shard 总量。
定期合并 segment 。
阿里云提供的ElasticSearch服务包含了监控、报警、日志可视化、一键扩容等特点
欢迎点赞+收藏+转发朋友圈素质三连
文章不错?点个【在看】吧! ????