- Unet系列网络解析
TechMasterPlus
图像分割计算机视觉人工智能深度学习
UnetUNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然,UNet这个基本的网络结构有太多的改进型,应用范围已经远远超出了医学图像的范畴。我们先从最原始的UNet网络模型开始讲解。1、UNet网络结构 开始时,UNet主要应用在医学图像的分割,并且快速成为大多做医学图像语义分割任务的baseline
- 2024-01-04 学习笔记
qq_19986067
学习笔记
1.语义分割中的lossfunction最全面汇总摘要这篇文章主要讨论了在图像语义分割任务中常用的几种损失函数,包括交叉熵损失、加权损失、焦点损失和Dicesoft损失。交叉熵损失是最常用的损失函数之一,用于比较每个像素的类别预测结果与标签向量,特别适用于多类别预测。加权损失用于解决类别不均衡的问题,通过对正负样本的损失赋予不同的权重来平衡样本分布。焦点损失则进一步关注难学习的样本,通过修改二元交
- 大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 语义分割:U-Net、UNet++、U2Net的联系和区别
xifenglie123321
计算机视觉人工智能深度学习
U-Net、UNet++、U2Net都是基于U-Net网络结构的改进版本,主要用于图像语义分割任务。U-Net是一种经典的图像语义分割网络,它由一个编码器和一个解码器组成,其中编码器用于提取图像特征,解码器用于将特征图还原为原始图像大小的分割结果。U-Net的特点是具有较强的特征提取能力和较高的分割精度,但在处理细节信息时可能存在一定的局限性。UNet++是对U-Net的改进,它通过增加多个分支和
- CAFFE -FCN训练配置过程
visionshop
深度学习
转载自http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=3&fps=1在2015年发表于计算机视觉顶会CVPR上的FullyConvolutionalNetworksforSemanticSegmentation论文(下文中简称FCN)开创了图像语义分割的新流派。在后来的科研工作者发表学术论文做实验的时候,还常常
- YOLOv5算法进阶改进(9)— 引入ASPP | 空洞空间金字塔池化
小哥谈
YOLOv5:从入门到实战YOLO人工智能计算机视觉目标检测深度学习机器学习
前言:Hello大家好,我是小哥谈。ASPP是空洞空间金字塔池化(AtrousSpatialPyramidPooling)的缩写。它是一种用于图像语义分割任务的特征提取方法。ASPP通过在不同尺度上进行空洞卷积操作,从而捕捉到图像中不同尺度的上下文信息。ASPP的主要思想是在输入特征图上应用多个不同采样率的空洞卷积,然后将这些特征图进行池化和融合,最后输出一个具有丰富上下文信息的特征图。前期回顾:
- Python遥感影像深度学习指南(3)-卫星图像语义分割之用PyTorch创建一个简单的U-Net 模型
gis收藏家
Python数据处理python深度学习pytorch
在上一篇文章中,介绍了如何在不使用torchvision模块的情况下,创建卫星图像的多通道数据集。现在,我们将继续创建一个简单的深度学习模型,用于卫星图像的语义分割。1、介绍下图来自"卷积神经网络实现了从高分辨率无人机图像中高效、准确、精细地分割植物物种和群落"的论文,我们要创建的U-Net模型与其类似,其中我们有3个压缩块contractingblocks和3个上采样块(也叫扩展块)upsamp
- 图像分割网络FCN详解与代码实现
金戈鐡馬
深度学习网络深度学习计算机视觉人工智能神经网络
全卷积网络(FCN):卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。上图是FCN网络像素级别的预测,支持每个像素点20个类别预测,多出来的一个类别是背景。要把一个正常的图像分类网络,转换为一个全卷
- 深度学习医学图像语义分割实战(一)
grace 1314
深度学习深度学习人工智能
1.什么是图像语义分割segementation一般是只对图像整体做分类,那么如果是将图像的目标提取出来,这就是语义分割。与分类不同的是,语义分割需要判断每个像素点的类别,进行精确分割,产生目标的掩码,图像的语义分割是像素级别的。2.如何对每个像素点进行分类语义分割最经典网络--FCN,常规的图像分类网络是最后展成全连接层,是一维输出,而FCN则可以将全连接层换成卷积,这样就可以得到一张二维的fe
- 阅读代码的记录
小鹿学程序
实习记录深度学习计算机视觉目标检测
1-utils_metrics.py用在train.py中做指标衡量,现在想在推理(predict.py)的时候衡量一下指标2-调研眼睛部位的单独分割。https://blog.csdn.net/qq_40234695/article/details/88633094衡量图像语义分割准确率主要有三种方法:像素准确率(pixelaccuracy,PA)平均像素准确率(meanpixelaccurac
- 秋天的第一个模型——DANet
--行者
计算机视觉人工智能
(1)模型介绍DANet全称为DualAttentionNetwork,是一种用于图像语义分割的深度神经网络模型。DANet利用了空间注意力机制和通道注意力机制来捕获图像中的空间和通道信息,从而提高了分割的准确性。在DANet中,空间注意力机制用于对每个像素点周围的上下文信息进行建模,以便更好地捕捉物体的形状和边缘信息。而通道注意力机制则用于对每个特征通道进行加权,以便更好地挖掘有用的特征信息。D
- 软著项目推荐 深度学习实现语义分割算法系统 - 机器视觉
iuerfee
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- Pytorch 基于 deeplabv3_resnet50 迁移训练自己的图像语义分割模型
小毕超
机器学习pytorch人工智能python
一、图像语义分割图像语义分割是计算机视觉领域的一项重要任务,旨在将图像中的每个像素分配到其所属的语义类别,从而实现对图像内容的细粒度理解。与目标检测不同,图像语义分割要求对图像中的每个像素进行分类,而不仅仅是确定物体的边界框。deeplabv3_resnet50就是一个常用的语义分割模型,它巧妙地将两个强大的神经网络架构融合在一起,为像素级别的图像理解提供了强大的解决方案。首先,DeepLabV3
- 深度学习实现语义分割算法系统 - 机器视觉 计算机竞赛
Mr.D学长
pythonjava
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 自动驾驶入门日记-5-视频语义分割
我爱大头老婆
相比于图像语义分割,视频语义分割具有高帧数(15-30帧/s),前后帧之间高相关性的特点。并且在自动驾驶任务中,对RGB摄像头传入的视频帧信号处理具有很高的实时性要求,因此针对视频语义分割任务来讲,需要在图像语义分割的任务上做进一步的工作。如何有效利用视频帧之间的时序相关性将对视频分割结果产生很大影响,目前主流分为两派,一类是利用时间连续性增强语义分割结果的准确性,另一种则关注如何降低计算成本,以
- FCN与CNN最大的区别?
今年不吃饭...
ubuntu深度学习
解析:FCN中用卷积层替换了CNN中的全连接层1、FCN概述CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别)。传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测。这样做有3个问题: -像素区域的大小如何确定; -存储及计算量非常大; -像素区域的大小
- Mask RCNN - 标注软件
Oscar_hailiang
图像语义分割是一种pixel-wise级的一种图像分类操作,其目的是在图像中上的同一个类别上打上相同的label,以表示这个类别是同一类。在训练自己的数据集中,语义分割最重要且最基础的一步便是对图像进行标注,以训练得到自己的模型。在这推荐一个python版的labelme,链接:https://github.com/wkentaro/labelmepipinstalllabelme通过open读取
- 用于高分辨率遥感图像语义分割的边缘引导网络
火柴狗
网络
EdgeGuidanceNetworkforSemanticSegmentationofHigh-ResolutionRemoteSensingImagesEdgeGuidanceNetworkforSemanticSegmentationofHigh-ResolutionRemoteSensingImages背景贡献、总结实验方法语义特征分支空间特征分支空间-语义特征融合解码器损失函数语义损失边
- 【论文阅读】Swin Transformer Embedding UNet用于遥感图像语义分割
川川子溢
论文阅读transformer深度学习pytorch
【论文阅读】SwinTransformerEmbeddingUNet用于遥感图像语义分割文章目录【论文阅读】SwinTransformerEmbeddingUNet用于遥感图像语义分割一、相应介绍二、相关工作2.1基于CNN的遥感图像语义分割2.2Self-Attention机制2.3VisionTransformer三、方法3.1网络结构3.2SwinTransformerBlocK3.3空间交
- 第91步 深度学习图像分割:FCN建模
Jet4505
《100StepstoGetML》—JET学习笔记深度学习人工智能图像分割FCN
基于WIN10的64位系统演示一、写在前面本期,我们继续学习深度学习图像分割系列的另一个模型,FCN(FullyConvolutionalNetwork)。二、FCNFCN是一种用于图像语义分割的神经网络。与传统的分类网络(如VGG、AlexNet)不同,FCN可以为输入图像中的每个像素生成一个分类标签。(1)核心特点与组成部分全卷积化:FCN的名称来源于其结构,它不包含任何全连接层。传统的全连接
- 深度学习AIR-PolSAR-Seg图像数据预处理
独行的喵
深度学习人工智能
文章目录深度学习sar图像数据预处理一.图片预处理操作1.log(1+x)处理2.sqrt平方化处理二.原网络训练效果展示原始数据训练效果展示:三.对比实验1.采用原始数据2.采用取log(1+x)后的数据3.采用取平方后归一化处理:四.总结:五.思考深度学习sar图像数据预处理一.图片预处理操作用于sar图像语义分割的图片为512x512x1的图片,有HH,HV,VH,VV四种极化方式我们拿到的
- 点云学习记录
一个机械高工的码农人生
学习
(50封私信/79条消息)三维点云数据的语义分割方法除了pointnet还有哪些呢?-知乎(zhihu.com)(50封私信/80条消息)点云特征提取-搜索结果-知乎(zhihu.com)(50封私信/80条消息)点云提取特征如何进行关键点匹配?-知乎(zhihu.com)1、图像语义分割1.1、基于全卷积网络的方法自2012年AlexNet[1]问世以来,CNN在图像分类和目标检测中均取得了巨大
- labelme 语义分割数据集_图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练...
weixin_39556064
labelme语义分割数据集
labelme(标注mask数据集用的)windowspython2pipinstallpyqtpipinstalllabelmepython3pipinstallpyqt5pipinstalllabelmeubuntu16.04系统自带的python2.7环境sudoapt-getinstallpython-qt4pyqt4-dev-toolssudopipinstalllabelme#pyth
- 图像语义分割准确率度量方法总结
weixin_30768661
人工智能python
图像语义分割准确率度量方法总结衡量图像语义分割准确率主要有三种方法:像素准确率(pixelaccuracy,PA)平均像素准确率(meanpixelaccuracy,MPA)平均IOU(MeanIntersectionoverUnion,MIOU)在介绍三种方法之前,需要先说明一些符号表示的意义。:类别总数,如果包括背景的话就是:真实像素类别为的像素被预测为类别
- 竞赛选题 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 自动驾驶入门日记-2-图像语义分割
我爱大头老婆
对交通场景的有效认知是自动驾驶中的关键一环,尤其是对道路可行域的识别和检测,对前方车辆行人的识别和轨迹预测,这些行为的预测准确性直接决定了自动驾驶汽车的安全性能,例如几年前一辆特斯拉L2级别的自动驾驶汽车由于将一辆白色大货车误识别为天空,导致车毁人亡的悲剧。同时相比于激光雷达的物体检测,使用RGB图像信息可以完成在雾、雪、沙尘暴等恶劣天气条件下的物体检测并且成本较低。而单纯的物体检测会丢失场景的相
- 全连接神经网络 - FCN
mango1698
Python神经网络人工智能深度学习目标检测
FCN(全卷积神经网络)图像语义分割的一种框架,是深度学习用于语义分割领域的开山之作。FCN将传统CNN后面的全连接层换成了卷积层,这样网络的输出将是热力图而非类别;同时,为解决卷积和池化导致图像尺寸的变小,使用上采样方式对图像尺寸进行恢复。FCN网络的特点:不含全连接层的全卷积网络,可适应任意尺寸输入;反卷积层增大图像尺寸,输出精细结果;跳级结构,确保鲁棒性和精确性。语义分割是对图像中的每个像素
- 图像语义分割 pytorch复现DeepLab v1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)
郭庆汝
pytorch网络人工智能1024程序员节
图像语义分割pytorch复现DeepLabv1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)背景介绍2、网络结构详解2.1LarFOV效果分析2.2DeepLabv1-LargeFOV模型架构2.3MSc(Multi-Scale,多尺度(预测))2.3以VGG16为特征提取骨干网络代码pytorch实现网络结构项目背景介绍论文名称:Sema
- 图像语义分割 pytorch复现U2Net图像分割网络详解
郭庆汝
网络pytorchU2Net
图像语义分割pytorch复现U2Net图像分割网络详解1、U2Net网络模型结构2、block模块结构解析RSU-7模块RSU-4FsaliencymapfusionmoduleU2Net网络结构详细参数配置RSU模块代码实现RSU4F模块代码实现u2net_full与u2net_lite模型配置函数U2Net网络整体定义类损失函数计算评价指标数据集pytorch训练U2Net图像分割模型U2-
- 使用 labelme 进行图像语义分割标注
谢小帅
安装过程:https://blog.csdn.net/u011574296/article/details/797406331.手工标注并保存为json文件Ctrl+S保存为*.json文件2.labelme自带指令将json文件转换为分割图像labelme_json_to_dataset0.json生成一个文件夹img.pnglabel.pnglabel_viz.png其中每个类的颜色是labe
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开