出现该问题,往往是由于没有争取读取到hadoop中配置信息,
HADOOP_HOME=/hadoop/hadoop-2.7.2
HADOOP_CONF_DIR=/hadoop/hadoop-2.7.2/etc/hadoop/
FLINK_HOME=/home/flink-1.4.2
同时建议使用Flink提供的官方flink-hadoop依赖包,自身提供的hadoop的jar包坑不全
在maven中pom.xml中加入如下依赖
使用不同的flink官方包:如果要做checkpoint功能,需要此时需要配置
org.apache.flink
flink-shaded-hadoop2
1.4.2
ps:其他的maven中的依赖项,见我的另外一篇博客:
https://blog.csdn.net/fct2001140269/article/details/84864151
提交执行Flink的jar包时候,出现错误[Flink JobExecutionException: akka.client.timeout]
表面来看就是你的工程没有在规定的时间内(Flink集群默认配置中是60s),可能是你的工程项目比较大,jobManager进程难以在规定的短时间内完成Flink的逻辑topology图的构建,或者难以在规定的时间内,完成各个算子(例如:richMapFunction())的初始化等工作;
建议在集群中配置如下选型:增加job作业提交允许的构建和初始化读取资源的时间。
-akka.client.timeout:600s
-akka.ask.timeout:600s
重新提交jar包到集群中,等待一段时间可以在web-ui上查看到任务提交情况。(如果失败,可能还有其他原因导致到异常!)
查看JobManager日志:
WARN org.apache.flink.runtime.webmonitor.JobManagerRetriever - Failed to retrieve leader gateway and port.
akka.actor.ActorNotFound: Actor not found for: ActorSelection[Anchor(akka.tcp://flink@t-sha1-flk-01:6123/), Path(/user/jobmanager)]
at akka.actor.ActorSelection$$anonfun$resolveOne$1.apply(ActorSelection.scala:65)
at akka.actor.ActorSelection$$anonfun$resolveOne$1.apply(ActorSelection.scala:63)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55)
at akka.dispatch.BatchingExecutor$Batch.run(BatchingExecutor.scala:73)
at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.unbatchedExecute(Future.scala:74)
at akka.dispatch.BatchingExecutor$class.execute(BatchingExecutor.scala:120)
at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.execute(Future.scala:73)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
at akka.pattern.PromiseActorRef$$anonfun$1.apply$mcV$sp(AskSupport.scala:334)
at akka.actor.Scheduler$$anon$7.run(Scheduler.scala:117)
at scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:599)
at scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:109)
at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:597)
at akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(Scheduler.scala:474)
at akka.actor.LightArrayRevolverScheduler$$anon$8.executeBucket$1(Scheduler.scala:425)
at akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:429)
at akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:381)
at java.lang.Thread.run(Thread.java:748)
/etc/hosts中配置的主机名都是小写,但是在Flink配置文件(flink-config.yaml、masters、slaves)中配置的都是大写的hostname,将flink配置文件中的hostname都改为小写或者IP地址。
AsynchronousException{java.lang.Exception: Could not materialize checkpoint 4 for operator Compute By Event Time (1/12).}
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:970)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: Could not materialize checkpoint 4 for operator Compute By Event Time (1/12).
... 6 more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=7061809 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:192)
at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:43)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:897)
... 5 more
Suppressed: java.lang.Exception: Could not properly cancel managed keyed state future.
at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:90)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.cleanup(StreamTask.java:1023)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:961)
... 5 more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=7061809 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:192)
at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:43)
at org.apache.flink.runtime.state.StateUtil.discardStateFuture(StateUtil.java:85)
at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:88)
... 7 more
Caused by: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=7061809 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory.checkSize(MemCheckpointStreamFactory.java:64)
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetBytes(MemCheckpointStreamFactory.java:144)
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetHandle(MemCheckpointStreamFactory.java:125)
at org.apache.flink.runtime.checkpoint.AbstractAsyncSnapshotIOCallable.closeStreamAndGetStateHandle(AbstractAsyncSnapshotIOCallable.java:100)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$1.performOperation(HeapKeyedStateBackend.java:351)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$1.performOperation(HeapKeyedStateBackend.java:329)
at org.apache.flink.runtime.io.async.AbstractAsyncIOCallable.call(AbstractAsyncIOCallable.java:72)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend.snapshot(HeapKeyedStateBackend.java:372)
at org.apache.flink.streaming.api.operators.AbstractStreamOperator.snapshotState(AbstractStreamOperator.java:397)
at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.checkpointStreamOperator(StreamTask.java:1162)
at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.executeCheckpointing(StreamTask.java:1094)
at org.apache.flink.streaming.runtime.tasks.StreamTask.checkpointState(StreamTask.java:654)
at org.apache.flink.streaming.runtime.tasks.StreamTask.performCheckpoint(StreamTask.java:590)
at org.apache.flink.streaming.runtime.tasks.StreamTask.triggerCheckpointOnBarrier(StreamTask.java:543)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.notifyCheckpoint(BarrierBuffer.java:378)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.processBarrier(BarrierBuffer.java:281)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.getNextNonBlocked(BarrierBuffer.java:183)
at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:213)
at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:69)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:263)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:702)
... 1 more
[CIRCULAR REFERENCE:java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=7061809 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.]
状态存储,默认是在内存中,改为存储到HDFS中:
state.backend.fs.checkpointdir: hdfs://t-sha1-flk-01:9000/flink-checkpoints
AsynchronousException{java.lang.Exception: Could not materialize checkpoint 1488 for operator Compute By Event Time -> (MonitorData, MonitorDataMapping, MonitorSamplingData) (6/6).}
at org.apache.flink.streaming.runtime.tasks.StreamTaskAsyncCheckpointRunnable.run(StreamTask.java:948)atjava.util.concurrent.Executors'>[Math Processing Error]AsyncCheckpointRunnable.run(StreamTask.java:948)atjava.util.concurrent.ExecutorsAsyncCheckpointRunnable.run(StreamTask.java:948) at java.util.concurrent.ExecutorsRunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: Could not materialize checkpoint 1488 for operator Compute By Event Time -> (MonitorData, MonitorDataMapping, MonitorSamplingData) (6/6).
... 6 more
Caused by: java.util.concurrent.ExecutionException: org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /flink-checkpoints/8c274785f1ab027e6146a59364be645f/chk-1488/2c612f30-c57d-4ede-9025-9554ca11fd12 could only be replicated to 0 nodes instead of minReplication (=1). There are 3 datanode(s) running and no node(s) are excluded in this operation.
at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1628)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getNewBlockTargets(FSNamesystem.java:3121)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3045)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:725)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:493)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtosClientNamenodeProtocol'>[Math Processing Error]ClientNamenodeProtocolClientNamenodeProtocol2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngineServer'>[Math Processing Error]ServerServerProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)
at org.apache.hadoop.ipc.RPCServer.call(RPC.java:982)atorg.apache.hadoop.ipc.Server'>[Math Processing Error]Server.call(RPC.java:982)atorg.apache.hadoop.ipc.ServerServer.call(RPC.java:982) at org.apache.hadoop.ipc.ServerHandler1.run(Server.java:2217)atorg.apache.hadoop.ipc.Server'>[Math Processing Error]1.run(Server.java:2217)atorg.apache.hadoop.ipc.Server1.run(Server.java:2217) at org.apache.hadoop.ipc.ServerHandler1.run(Server.java:2213)atjava.security.AccessController.doPrivileged(NativeMethod)atjavax.security.auth.Subject.doAs(Subject.java:422)atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1746)atorg.apache.hadoop.ipc.Server'>[Math Processing Error]1.run(Server.java:2213)atjava.security.AccessController.doPrivileged(NativeMethod)atjavax.security.auth.Subject.doAs(Subject.java:422)atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1746)atorg.apache.hadoop.ipc.Server1.run(Server.java:2213) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1746) at org.apache.hadoop.ipc.ServerHandler.run(Server.java:2213)
查看hdfs日志:
WARN org.apache.hadoop.hdfs.protocol.BlockStoragePolicy:
Failed to place enough replicas: expected size is 2 but only 0 storage types can be selected
(replication=3, selected=[], unavailable=[DISK], removed=[DISK, DISK],
policy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]})
搭建的Flink使用HDFS作为CheckPoint的存储,当flink重启时,原来的checkpoint没有用了,我就手动给删了,不知道和这个有没有关系,为了不继续报异常,便重启了Flink、HDFS,重启后不再有异常信息了。
但是查看HDFS日志时,发现如下警告(不合规范的URI格式):
WARN org.apache.hadoop.hdfs.server.common.Util:
Path /mnt/hadoop/dfs/name should be specified as a URI in configuration files.
Please update hdfs configuration
原来是配置错了,hdfs-site.xml中的
dfs.namenode.name.dir
/mnt/hadoop/dfs/name
dfs.namenode.name.dir
file:/mnt/hadoop/dfs/name
至此问题解决,根上的问题应该是hdfs-site.xml配置的不对导致的。
Flink启动时,有时会有如下警告信息:
WARN org.apache.hadoop.util.NativeCodeLoader
- Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
参考资料1:http://blog.csdn.net/jack85986370/article/details/51902871
编辑/etc/profile文件,增加
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
未能解决该问题
WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /usr/hadoop-2.7.3/lib/native/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: false
lz4: true revision:99
bzip2: false
openssl: false Cannot load libcrypto.so (libcrypto.so: cannot open shared object file: No such file or directory)!
INFO util.ExitUtil: Exiting with status 1
参考资料:http://blog.csdn.net/zhangzhaokun/article/details/50951238
cd /usr/lib64/
ln -s libcrypto.so.1.0.1e libcrypto.so
Flink运行一段时间后,出现TaskManager退出情况,通过jvisualvm抓取TaskManager的Dump,使用MAT进行分析,结果如下:
One instance of "org.apache.flink.runtime.io.network.buffer.NetworkBufferPool"
loaded by "sun.misc.Launcher$AppClassLoader @ 0x6c01de310" occupies 403,429,704 (76.24%) bytes.
The memory is accumulated in one instance of "java.lang.Object[]" loaded by "".
Keywords
sun.misc.Launcher$AppClassLoader @ 0x6c01de310
java.lang.Object[]
org.apache.flink.runtime.io.network.buffer.NetworkBufferPool
发现是网络缓冲池不足,查到一篇文章:
https://issues.apache.org/jira/browse/FLINK-4536
和我遇到的情况差不多,也是使用了InfluxDB作为Sink,最后在Close里进行关闭,问题解决。
另外,在$FLINK_HOME/conf/flink-conf.yaml中,也有关于TaskManager网络栈的配置,暂时未调整。
# The number of buffers for the network stack.
#
# taskmanager.network.numberOfBuffers: 2048
现象:
java.lang.Exception: Failed to send data to Kafka: This server is not the leader for that topic-partition.
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducerBase.checkErroneous(FlinkKafkaProducerBase.java:373)
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducerBase.invoke(FlinkKafkaProducerBase.java:280)
at org.apache.flink.streaming.api.operators.StreamSink.processElement(StreamSink.java:41)
at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:206)
at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:69)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:263)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:702)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition.
INFO [SessionExpirationListener on 10], ZK expired; shut down all controller components and
try to re-elect (kafka.controller.KafkaController$SessionExpirationListener)
参考:http://colabug.com/122248.html 以及 Kafka官方文档(http://kafka.apache.org/082/documentation.html#producerconfigs),关于producer参数设置
设置了retries参数,可以在Kafka的Partition发生leader切换时,Flink不重启,而是做3次尝试:
kafkaProducerConfig
{
"bootstrap.servers": "192.169.2.20:9093,192.169.2.21:9093,192.169.2.22:9093"
"retries":3
}