不得不说,这深度学习框架更新太快了尤其到了Keras2.0版本,快到Keras中文版好多都是错的,快到官方文档也有旧的没更新,前路坑太多。
到发文为止,已经有theano/tensorflow/CNTK支持keras,虽然说tensorflow造势很多,但是笔者认为接下来Keras才是正道。
笔者先学的caffe,从使用来看,比caffe简单超级多,非常好用,特别是重新训练一个模型,但是呢,在fine-tuning的时候,遇到了很多问题,对新手比较棘手。
中文文档:http://keras-cn.readthedocs.io/en/latest/
官方文档:https://keras.io/
文档主要是以keras2.0。
.
1、keras系列︱Sequential与Model模型、keras基本结构功能(一)
2、keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)
3、keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
4、keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
5、keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完整案例(五)
写成了思维导图,便于观察与理解。
###2.keras网络配置
其中回调函数callbacks应该是keras的精髓~
###3.keras预处理功能
###4、模型的节点信息提取
# 节点信息提取
config = model.get_config() # 把model中的信息,solver.prototxt和train.prototxt信息提取出来
model = Model.from_config(config) # 还回去
# or, for Sequential:
model = Sequential.from_config(config) # 重构一个新的Model模型,用去其他训练,fine-tuning比较好用
###5、 模型概况查询(包括权重查询)
# 1、模型概括打印
model.summary()
# 2、返回代表模型的JSON字符串,仅包含网络结构,不包含权值。可以从JSON字符串中重构原模型:
from models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
# 3、model.to_yaml:与model.to_json类似,同样可以从产生的YAML字符串中重构模型
from models import model_from_yaml
yaml_string = model.to_yaml()
model = model_from_yaml(yaml_string)
# 4、权重获取
model.get_layer() #依据层名或下标获得层对象
model.get_weights() #返回模型权重张量的列表,类型为numpy array
model.set_weights() #从numpy array里将权重载入给模型,要求数组具有与model.get_weights()相同的形状。
# 查看model中Layer的信息
model.layers 查看layer信息
###6、模型保存与加载
model.save_weights(filepath)
# 将模型权重保存到指定路径,文件类型是HDF5(后缀是.h5)
model.load_weights(filepath, by_name=False)
# 从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。
# 如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重
.
本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usage for tensorflow backend · Issue #1538 · fchollet/keras · GitHub)
在使用keras时候会出现总是占满GPU显存的情况,可以通过重设backend的GPU占用情况来进行调节。
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
需要注意的是,虽然代码或配置层面设置了对显存占用百分比阈值,但在实际运行中如果达到了这个阈值,程序有需要的话还是会突破这个阈值。换而言之如果跑在一个大数据集上还是会用到更多的显存。以上的显存限制仅仅为了在跑小数据集时避免对显存的浪费而已。(2017年2月20日补充)
filepath = 'model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
# fit model
model.fit(x, y, epochs=20, verbose=2, callbacks=[checkpoint], validation_data=(x, y))
save_best_only打开之后,会如下:
ETA: 3s - loss: 0.5820Epoch 00017: val_loss did not improve
如果val_loss 提高了就会保存,没有提高就不会保存。
RUN = RUN + 1 if 'RUN' in locals() else 1 # locals() 函数会以字典类型返回当前位置的全部局部变量。
LOG_DIR = model_save_path + '/training_logs/run{}'.format(RUN)
LOG_FILE_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' # 模型Log文件以及.h5模型文件存放地址
tensorboard = TensorBoard(log_dir=LOG_DIR, write_images=True)
checkpoint = ModelCheckpoint(filepath=LOG_FILE_PATH, monitor='val_loss', verbose=1, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
history = model.fit_generator(generator=gen.generate(True), steps_per_epoch=int(gen.train_batches / 4),
validation_data=gen.generate(False), validation_steps=int(gen.val_batches / 4),
epochs=EPOCHS, verbose=1, callbacks=[tensorboard, checkpoint, early_stopping])
都是在回调函数中起作用:
EarlyStopping patience:当early
(1)stop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练。
(2)mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值停止下降则中止训练。在max模式下,当检测值不再上升则停止训练。
模型检查点ModelCheckpoint
(1)save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
(2) mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
(3)save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
(4)period:CheckPoint之间的间隔的epoch数
可视化tensorboard write_images: 是否将模型权重以图片的形式可视化
其他内容可参考keras中文文档
.
序贯模型是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不分叉。
一般需要:
add(self, layer)
# 譬如:
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dropout(0.25))
add里面只有层layer的内容,当然在序贯式里面,也可以model.add(other_model)加载另外模型,在函数式里面就不太一样,详见函数式。
compile(self, optimizer, loss, metrics=None, sample_weight_mode=None)
其中:
optimizer: 字符串(预定义优化器名)或优化器对象,参考优化器
loss: 字符串(预定义损失函数名)或目标函数,参考损失函数
metrics: 列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是metrics=[‘accuracy’]
sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。
默认为“None”,代表按样本赋权(1D权)。在下面fit函数的解释中有相关的参考内容。
kwargs: 使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function
注意:
模型在使用前必须编译,否则在调用fit或evaluate时会抛出异常。
fit(self, x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
本函数将模型训练nb_epoch轮,其参数有:
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
注意:
要与之后的fit_generator做区别,两者输入x/y不同。
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
predict(self, x, batch_size=32, verbose=0)
predict_classes(self, x, batch_size=32, verbose=1)
predict_proba(self, x, batch_size=32, verbose=1)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
predict_classes:本函数按batch产生输入数据的类别预测结果;
predict_proba:本函数按batch产生输入数据属于各个类别的概率
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
test_on_batch(self, x, y, sample_weight=None)
predict_on_batch(self, x)
#利用Python的生成器,逐个生成数据的batch并进行训练。
#生成器与模型将并行执行以提高效率。
#例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练
# 参考链接:http://keras-cn.readthedocs.io/en/latest/models/sequential/
有了该函数,图像分类训练任务变得很简单。
fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
# 案例:
def generate_arrays_from_file(path):
while 1:
f = open(path)
for line in f:
# create Numpy arrays of input data
# and labels, from each line in the file
x, y = process_line(line)
yield (x, y)
f.close()
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
samples_per_epoch=10000, epochs=10)
其他的两个辅助的内容:
evaluate_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False)
predict_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False, verbose=0)
evaluate_generator:本函数使用一个生成器作为数据源评估模型,生成器应返回与test_on_batch的输入数据相同类型的数据。该函数的参数与fit_generator同名参数含义相同,steps是生成器要返回数据的轮数。
predcit_generator:本函数使用一个生成器作为数据源预测模型,生成器应返回与test_on_batch的输入数据相同类型的数据。该函数的参数与fit_generator同名参数含义相同,steps是生成器要返回数据的轮数。
For a single-input model with 2 classes (binary classification):
from keras.models import Sequential
from keras.layers import Dense, Activation
#模型搭建阶段
model= Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
# Dense(32) is a fully-connected layer with 32 hidden units.
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
其中:
Sequential()代表类的初始化;
Dense代表全连接层,此时有32个神经元,最后接relu,输入的是100维度
model.add,添加新的全连接层,
compile,跟prototxt一样,一些训练参数,solver.prototxt
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, nb_epoch =10, batch_size=32)
之前报过这样的错误,是因为版本的问题。 版本1.2里面是nb_epoch ,而keras2.0是epochs = 10
error:
TypeError: Received unknown keyword arguments: {'epochs': 10}
其中:
epoch=batch_size * iteration,10次epoch代表训练十次训练集
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
# Generate dummy data
x_train = np.random.random((100, 100, 100, 3))
# 100张图片,每张100*100*3
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
# 100*10
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)
# 20*100
model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)
标准序贯网络,标签的训练模式
注意:
这里非常重要的一点,对于我这样的新手,这一步的作用?
keras.utils.to_categorical
特别是多分类时候,我之前以为输入的就是一列(100,),但是keras在多分类任务中是不认得这个的,所以需要再加上这一步,让其转化为Keras认得的数据格式。
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM
model = Sequential()
model.add(Embedding(max_, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)
.
来自keras中文文档:http://keras-cn.readthedocs.io/en/latest/
比序贯模型要复杂,但是效果很好,可以同时/分阶段输入变量,分阶段输出想要的模型;
一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,那么你总应该选择函数式模型。
不同之处:
书写结构完全不一致
一般需要:
1、model.layers,添加层信息;
2、model.compile,模型训练的BP模式设置;
3、model.fit,模型训练参数设置 + 训练;
4、evaluate,模型评估;
5、predict 模型预测
model.layers:组成模型图的各个层
model.inputs:模型的输入张量列表
model.outputs:模型的输出张量列表
compile(self, optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None)
本函数编译模型以供训练,参数有
optimizer:优化器,为预定义优化器名或优化器对象,参考优化器
loss:损失函数,为预定义损失函数名或一个目标函数,参考损失函数
metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是metrics=[‘accuracy’]如果要在多输出模型中为不同的输出指定不同的指标,可像该参数传递一个字典,例如metrics={‘ouput_a’: ‘accuracy’}
sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权)。
如果模型有多个输出,可以向该参数传入指定sample_weight_mode的字典或列表。在下面fit函数的解释中有相关的参考内容。
【Tips】如果你只是载入模型并利用其predict,可以不用进行compile。在Keras中,compile主要完成损失函数和优化器的一些配置,是为训练服务的。predict会在内部进行符号函数的编译工作(通过调用_make_predict_function生成函数)
fit(self, x=None, y=None, batch_size=32, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
本函数用以训练模型,参数有:
输入数据与规定数据不匹配时会抛出错误
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
predict(self, x, batch_size=32, verbose=0)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
test_on_batch(self, x, y, sample_weight=None)
predict_on_batch(self, x)
train_on_batch:本函数在一个batch的数据上进行一次参数更新,函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。
test_on_batch:本函数在一个batch的样本上对模型进行评估,函数的返回与evaluate的情形相同;
predict_on_batch:本函数在一个batch的样本上对模型进行测试,函数返回模型在一个batch上的预测结果
fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
evaluate_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False)
from keras.layers import Input, Dense
from keras.models import Model
# This returns a tensor
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
# 输入inputs,输出x
# (inputs)代表输入
x = Dense(64, activation='relu')(x)
# 输入x,输出x
predictions = Dense(10, activation='softmax')(x)
# 输入x,输出分类
# This creates a model that includes
# the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels) # starts training
其中:
可以看到结构与序贯模型完全不一样,其中x = Dense(64, activation=‘relu’)(inputs)中:(input)代表输入;x代表输出
model = Model(inputs=inputs, outputs=predictions);该句是函数式模型的经典,可以同时输入两个input,然后输出output两个模型
x = Input(shape=(784,))
# This works, and returns the 10-way softmax we defined above.
y = model(x)
# model里面存着权重,然后输入x,输出结果,用来作fine-tuning
# 分类->视频、实时处理
from keras.layers import TimeDistributed
# Input tensor for sequences of 20 timesteps,
# each containing a 784-dimensional vector
input_sequences = Input(shape=(20, 784))
# 20个时间间隔,输入784维度的数据
# This applies our previous model to every timestep in the input sequences.
# the output of the previous model was a 10-way softmax,
# so the output of the layer below will be a sequence of 20 vectors of size 10.
processed_sequences = TimeDistributed(model)(input_sequences)
# Model是已经训练好的
其中:
Model是已经训练好的,现在用来做迁移学习;
其中还可以通过TimeDistributed来进行实时预测;
TimeDistributed(model)(input_sequences),input_sequences代表序列输入;model代表已训练的模型
本案例很好,可以了解到Model的精髓在于他的任意性,给编译者很多的便利。
输入:
新闻语料;新闻语料对应的时间
输出:
新闻语料的预测模型;新闻语料+对应时间的预测模型
from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model
# Headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# Note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input')
# 一个100词的BOW序列
# This embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)
# Embedding层,把100维度再encode成512的句向量,10000指的是词典单词总数
# A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)
# ? 32什么意思?????????????????????
#然后,我们插入一个额外的损失,使得即使在主损失很高的情况下,LSTM和Embedding层也可以平滑的训练。
auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)
#再然后,我们将LSTM与额外的输入数据串联起来组成输入,送入模型中:
# 模型一:只针对以上的序列做的预测模型
# 模型二:组合模型
auxiliary_input = Input(shape=(5,), name='aux_input') # 新加入的一个Input,5维度
x = keras.layers.concatenate([lstm_out, auxiliary_input]) # 组合起来,对应起来
# We stack a deep densely-connected network on top
# 组合模型的形式
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
# And finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
#最后,我们定义整个2输入,2输出的模型:
model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])
#模型定义完毕,下一步编译模型。
#我们给额外的损失赋0.2的权重。我们可以通过关键字参数loss_weights或loss来为不同的输出设置不同的损失函数或权值。
#这两个参数均可为Python的列表或字典。这里我们给loss传递单个损失函数,这个损失函数会被应用于所有输出上。
其中:Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])是核心,
Input两个内容,outputs两个模型
# 训练方式一:两个模型一个loss
model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])
#编译完成后,我们通过传递训练数据和目标值训练该模型:
model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)
# 训练方式二:两个模型,两个Loss
#因为我们输入和输出是被命名过的(在定义时传递了“name”参数),我们也可以用下面的方式编译和训练模型:
model.compile(optimizer='rmsprop',
loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
loss_weights={'main_output': 1., 'aux_output': 0.2})
# And trained it via:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
{'main_output': labels, 'aux_output': labels},
epochs=50, batch_size=32)
因为输入两个,输出两个模型,所以可以分为设置不同的模型训练参数
一个节点,分成两个分支出去
import keras
from keras.layers import Input, LSTM, Dense
from keras.models import Model
tweet_a = Input(shape=(140, 256))
tweet_b = Input(shape=(140, 256))
#若要对不同的输入共享同一层,就初始化该层一次,然后多次调用它
# 140个单词,每个单词256维度,词向量
#
# This layer can take as input a matrix
# and will return a vector of size 64
shared_lstm = LSTM(64)
# 返回一个64规模的向量
# When we reuse the same layer instance
# multiple times, the weights of the layer
# are also being reused
# (it is effectively *the same* layer)
encoded_a = shared_lstm(tweet_a)
encoded_b = shared_lstm(tweet_b)
# We can then concatenate the two vectors:
# 连接两个结果
# axis=-1?????
merged_vector = keras.layers.concatenate([encoded_a, encoded_b], axis=-1)
# And add a logistic regression on top
predictions = Dense(1, activation='sigmoid')(merged_vector)
# 其中的1 代表什么????
# We define a trainable model linking the
# tweet inputs to the predictions
model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit([data_a, data_b], labels, epochs=10)
# 训练模型,然后预测
# 1、单节点
a = Input(shape=(140, 256))
lstm = LSTM(32)
encoded_a = lstm(a)
assert lstm.output == encoded_a
# 抽取获得encoded_a的输出张量
# 2、多节点
a = Input(shape=(140, 256))
b = Input(shape=(140, 256))
lstm = LSTM(32)
encoded_a = lstm(a)
encoded_b = lstm(b)
assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b
# 3、图像层节点
# 对于input_shape和output_shape也是一样,如果一个层只有一个节点,
#或所有的节点都有相同的输入或输出shape,
#那么input_shape和output_shape都是没有歧义的,并也只返回一个值。
#但是,例如你把一个相同的Conv2D应用于一个大小为(3,32,32)的数据,
#然后又将其应用于一个(3,64,64)的数据,那么此时该层就具有了多个输入和输出的shape,
#你就需要显式的指定节点的下标,来表明你想取的是哪个了
a = Input(shape=(3, 32, 32))
b = Input(shape=(3, 64, 64))
conv = Conv2D(16, (3, 3), padding='same')
conved_a = conv(a)
# Only one input so far, the following will work:
assert conv.input_shape == (None, 3, 32, 32)
conved_b = conv(b)
# now the `.input_shape` property wouldn't work, but this does:
assert conv.get_input_shape_at(0) == (None, 3, 32, 32)
assert conv.get_input_shape_at(1) == (None, 3, 64, 64)
#这个模型将自然语言的问题和图片分别映射为特征向量,
#将二者合并后训练一个logistic回归层,从一系列可能的回答中挑选一个。
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.layers import Input, LSTM, Embedding, Dense
from keras.models import Model, Sequential
# First, let's define a vision model using a Sequential model.
# This model will encode an image into a vector.
vision_model = Sequential()
vision_model.add(Conv2D(64, (3, 3) activation='relu', padding='same', input_shape=(3, 224, 224)))
vision_model.add(Conv2D(64, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
vision_model.add(Conv2D(128, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
vision_model.add(Conv2D(256, (3, 3), activation='relu'))
vision_model.add(Conv2D(256, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Flatten())
# Now let's get a tensor with the output of our vision model:
image_input = Input(shape=(3, 224, 224))
encoded_image = vision_model(image_input)
# Next, let's define a language model to encode the question into a vector.
# Each question will be at most 100 word long,
# and we will index words as integers from 1 to 9999.
question_input = Input(shape=(100,), dtype='int32')
embedded_question = Embedding(input_dim=10000, output_dim=256, input_length=100)(question_input)
encoded_question = LSTM(256)(embedded_question)
# Let's concatenate the question vector and the image vector:
merged = keras.layers.concatenate([encoded_question, encoded_image])
# And let's train a logistic regression over 1000 words on top:
output = Dense(1000, activation='softmax')(merged)
# This is our final model:
vqa_model = Model(inputs=[image_input, question_input], outputs=output)
# The next stage would be training this model on actual data.
.
如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:
model.load_weights(‘my_model_weights.h5’, by_name=True)
例如:
假如原模型为:
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))
model.add(Dense(3, name="dense_2"))
...
model.save_weights(fname)
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1")) # will be loaded
model.add(Dense(10, name="new_dense")) # will not be loaded
# load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)
使用:class_weight,sample_weight
两者的区别为:
class_weight—主要针对的上数据不均衡问题,比如:异常检测的二项分类问题,异常数据仅占1%,正常数据占99%; 此时就要设置不同类对loss的影响。
sample_weight—主要解决的是样本质量不同的问题,比如前1000个样本的可信度,那么它的权重就要高,后1000个样本可能有错、不可信,那么权重就要调低。
class_weight的使用:
cw = {0: 1, 1: 50}
model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,verbose=1,callbacks=cbks,validation_data=(x_test, y_test), shuffle=True,class_weight=cw)
sample_weight的使用:
来源:https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/46673
from sklearn.utils import class_weight
list_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
y = train[list_classes].values
sample_weights = class_weight.compute_sample_weight('balanced', y)
model.fit(X_t, y, batch_size=batch_size, epochs=epochs,validation_split=0.1,sample_weight=sample_weights, callbacks=callbacks_list)