深度学习在推荐领域的应用

作者:
吴岸城,菱歌科技首席算法科学家,致力于深度学习在文本、图像、预测推荐领域的应用。曾在中兴通讯、亚信(中国)担任研发经理、高级技术经理等职务。
责编:何永灿,欢迎人工智能领域技术投稿、约稿、给文章纠错,请发送邮件至[email protected]
本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅《程序员》
来源于:人工智能头条,深度学习在推荐领域的应用

首先要确定微博领域的数据,关于微博的数据可以这样分类:

用户基础数据:年龄、性别、公司、邮箱、地点、公司等。
关系图:根据人↔人,人↔微博的关注、评论、转发信息建立关系图。
内容数据:用户的微博内容,包含文字、图片、视频。

有了这些数据后,怎么做数据的整合分析?来看看现在应用最广的方式——协同过滤、或者叫关联推荐。协同过滤主要是利用某兴趣相投、拥有共同经验群体的喜好来推荐用户可能感兴趣的信息,协同过滤的发展有以下三个阶段:

  1. 第一阶段,基于用户喜好做推荐,用户A和用户B相似,用户B购买了物品a、b、c,用户A只购买了物品a,那就将物品b、c推荐给用户A。这就是基于用户的协同过滤,其重点是如何找到相似的用户。因为只有准确的找到相似的用户才能给出正确的推荐。而找到相似用户的方法,一般是根据用户的基本属性贴标签分类,再高级点可以用上用户的行为数据。
  2. 第二阶段,某些商品光从用户的属性标签找不到联系,而根据商品本身的内容联系倒是能发现很多有趣的推荐目标,它在某些场景中比基于相似用户的推荐原则更加有效。比如在购书或者电影类网站上,当你看一本书或电影时,推荐引擎会根据内容给你推荐相关的书籍或电影。
  3. 第三阶段,如果只把内容推荐单独应用在社交网络上,准确率会比较低,因为社交网络的关键特性还是社交关系。如何将社交关系与用户属性一起融入整个推荐系统就是关键。在神经网络和深度学习算法出现后,提取特征任务就变得可以依靠机器完成,人们只要把相应的数据准备好就可以了,其他数据都可以提取成向量形式,而社交关系作为一种图结构,如何表示为深度学习可以接受的向量形式,而且这种结构还需要有效还原原结构中位置信息?这就需要一种可靠的向量化社交关系的表示方法。基于这一思路,在2016年的论文中出现了一个算法node2vec,使社交关系也可以很好地适应神经网络。这意味着深度学习在推荐领域应用的关键技术点已被解决。

在实现算法前我们主要参考了如下三篇论文:

Audience Expansion for Online Social Network Advertising 2016
http://www.kdd.org/kdd2016/papers/files/adf0483-liuA.pdf
node2vec: Scalable Feature Learning for Networks Aditya Grover 2016
https://arxiv.org/abs/1607.00653
Deep Neural Networks for YouTube Recommendations 2016
http://dl.acm.org/citation.cfm?id=2959190
.


一、三篇论文解读

第一篇论文是LinkedIn给出的,主要谈了针对在线社交网络广告平台,如何根据已有的受众特征做受众群扩展。这涉及到如何定位目标受众和原始受众的相似属性。论文给出了两种方法来扩展受众:
与营销活动无关的受众扩展;
与营销活动有关的受众扩展。

深度学习在推荐领域的应用_第1张图片

在图1中,LinkedIn给出了如何利用营销活动数据、目标受众基础数据去预测目标用户行为进而发现新的用户。今天的推荐系统或广告系统越来越多地利用了多维度信息。如何将这些信息有效加以利用,这篇论文给出了一条路径,而且在工程上这篇论文也论证得比较扎实,值得参考。

第二篇论文,主要讲的是node2vec,这也是本文用到的主要算法之一。node2vec主要用于处理网络结构中的多分类和链路预测任务,具体来说是对网络中的节点和边的特征向量表示方法。
简单来说就是将原有社交网络中的图结构,表达成特征向量矩阵,每一个node(可以是人、物品、内容等)表示成一个特征向量,用向量与向量之间的矩阵运算来得到相互的关系。
下面来看看node2vec中的关键技术——随机游走算法,它定义了一种新的遍历网络中某个节点的邻域的方法,具体策略如图2所示。

第三篇论文讲的是Google如何做YouTube视频推荐,论文是在我做完结构设计和流程设计后看到的,其中模型架构的思想和我们不谋而合,还解释了为什么要引入DNN(后面提到所有的feature将会合并经历几层全连接层):引入DNN的好处在于大多数类型的连续特征和离散特征可以直接添加到模型当中。此外我们还参考了这篇论文对于隐含层(FC)单元个数选择。图3是这篇论文提到的算法结构。
深度学习在推荐领域的应用_第2张图片

.


二、实现

(a)数据准备

获得用户的属性(User Profile),如性别、年龄、学历、职业、地域、能力标签等;

根据项目内容和活动内容制定一套受众标签(Audience Label);

提取用户之间的关注关系,微博之间的转发关系;

获取微博message中的文本内容;

获得微博message中的图片内容。

(b)用户标签特征处理

根据步骤a中用户属性信息和已有的部分受众标签系统。利用GBDT算法(可以直接用xgboost)将没有标签的受众全部打上标签。这个分类问题中请注意处理连续值变量以及归一化。

将标签进行向量化处理,这个问题转化成对中文单词进行向量化,这里用word2vec处理后得到用户标签的向量化信息Label2vec。这一步也可以使用word2vec在中文的大数据样本下进行预训练,再用该模型对标签加以提取,对特征的提取有一定的提高,大约在0.5%左右。

(c)文本特征处理

将步骤a中提取到的所有微博message文本内容清洗整理,训练Doc2Vec模型,得到单
个文本的向量化表示,对所得的文本作聚类(KMeans,在30w的微博用户的message上测试,K取128对文本的区分度较强),最后提取每个cluster的中心向量,并根据每个用户所占有的cluster获得用户所发微博的文本信息的向量表示Content2vec。

(d)图像特征(可选)

将步骤a中提取到的所有的message图片信息整理分类,使用预训练卷积网络模型(这里为了平衡效率选取VGG16作为卷积网络)提取图像信息,对每个用户message中的图片做向量化处理,形成Image2vec,如果有多张图片将多张图片分别提取特征值再接一层MaxPooling提取重要信息后输出。

(e)社交关系建立(node2vec向量化)

将步骤a中获得到的用户之间的关系和微博之间的转发评论关系转化成图结构,并提取用户关系sub-graph,最后使用node2Vec算法得到每个用户的社交网络图向量化表示。 图4为简历社交关系后的部分图示。

(f)将bcde步骤得到的向量做拼接

经过两层FC,得到表示每个用户的多特征向量集(User Vector Set, UVS)。这里取的输出单元个数时可以根据性能和准确度做平衡,目前我们实现的是输出512个单元,最后的特征输出表达了用户的社交关系、用户属性、发出的内容、感兴趣的内容等的混合特征向量,这些特征向量将作为下一步比对相似性的输入值。

(g)分别计算种子用户和潜在目标用户的向量集

并比对相似性,我们使用的是余弦相似度计算相似性,将步骤f得到的用户特征向量集作为输入x,y,代入下面公式计算相似性:
使用余弦相似度要注意:余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感。因此没法衡量每个维度值的差异,这里我们要在每个维度上减去一个均值或者乘以一个系数,或者在之前做好归一化。

.


三、结果

我司算法团队根据Lookalike思想完整实现其算法,并在实际产品中投入试用。针对某客户(乳品领域世界排名前三的品牌主)计算出结果(部分):
深度学习在推荐领域的应用_第3张图片
可以观察到以上微博ID的主题基本都是西点企业或西点培训企业,和品牌主售卖的乳品有很高的关联性:乳品是非常重要的西点原料,除终端用户外,西点相关企业就是乳品企业主需要寻找的最重要的受众之一。

你可能感兴趣的:(R︱精准营销)