深入A*算法----浅析A*算法在搜索最短路径中的应用

 
一、前言
在这里我将对A*算法的实际应用进行一定的探讨,并且举一个有关A*
算法在最短路径搜索 的例子。值得注意的是这里并不对A*的基本的
概念作介绍,如果你还对A*算法不清楚的话, 请看姊妹篇《初识A*
算法》。
这里所举的例子是参考AMIT主页中的一个源程序,你可以在AMIT的站
点上下载也可以在我 的站点上下载。你使用这个源程序时,应该遵
守一定的公约。
二、A*算法的程序编写原理
我在《初识A*算法》中说过,A*算法是最好优先算法的一种。只是有
一些约束条件而已。 我们先来看看最好优先算法是如何编写的吧。
如图有如下的状态空间:(起始位置是A,目标位置是P,字母后的数
字表示节点的估价值)
搜索过程中设置两个表:OPEN和CLOSED。OPEN表保存了所有已生成而
未考察的节点,CLOSED 表中记录已访问过的节点。算法中有一步是
根据估价函数重排OPEN表。这样循环中的每一 步只考虑OPEN表中状
态最好的节点。具体搜索过程如下:
        1)初始状态:
                OPEN=[A5];CLOSED=[];
        2)估算A5,取得搜有子节点,并放入OPEN表中;
                OPEN=[B4,C4,D6];CLOSED=[A5]
        3)估算B4,取得搜有子节点,并放入OPEN表中;
                OPEN=[C4,E5,F5,D6];CLOSED=[B4,A5]
        4)估算C4;取得搜有子节点,并放入OPEN表中;
                OPEN=[H3,G4,E5,F5,D6];CLOSED=[C4,B4,A5]
        5)估算H3,取得搜有子节点,并放入OPEN表中;
                OPEN=[O2,P3,G4,E5,F5,D6];CLOSED=H3C4,B4,A5]
        6)估算O2,取得搜有子节点,并放入OPEN表中;
                OPEN=[P3,G4,E5,F5,D6];CLOSED=[O2,H3,C4,B4,A5]
        7)估算P3,已得到解;
看了具体的过程,再看看伪程序吧。算法的伪程序如下:
        Best_First_Search()
        {
        Open = [起始节点]; Closed = [];
        while ( Open表非空 )
        {
            从Open中取得一个节点X,并从OPEN表中删除。
            if (X是目标节点)
            {
                求得路径PATH;返回路径PATH;
            }
            for (每一个X的子节点Y)
            {
                if( Y不在OPEN表和CLOSE表中 )
                {
                   求Y的估价值;并将Y插入OPEN表中;//还没有排序
                }
                else
                    if( Y在OPEN表中 )
                    {
                        if( Y的估价值小于OPEN表的估价值 )
                            更新OPEN表中的估价值;
                    }
                    else  //Y在CLOSE表中
                    {
                        if( Y的估价值小于CLOSE表的估价值 )
                        {
                            更新CLOSE表中的估价值;
                            从CLOSE表中移出节点,并放入OPEN表中;
                        }
                    }
                将X节点插入CLOSE表中;
                按照估价值将OPEN表中的节点排序;
             }//end for
        }//end while
        }//end func
啊!伪程序出来了,写一个源程序应该不是问题了,依葫芦画瓢就可
以。A*算法的程序与此 是一样的,只要注意估价函数中的g(n)的h
(n)约束条件就可以了。不清楚的可以看看《初识A*算法》。好了,
我们可以进入另一个重要的话题,用A*算法实现最短路径的搜索。在
此之 前你最好认真的理解前面的算法。不清楚可以找我。我的Email
在文章尾。
三、用A*算法实现最短路径的搜索
在游戏设计中,经常要涉及到最短路径的搜索,现在一个比较好的方
法就是用A*算法进行设 计。他的好处我们就不用管了,反正就是
好!^_*
注意下面所说的都是以 ClassAstar 这个程序为蓝本,你可以在这里
下载这个程序。这个程 序是一个完整的工程。里面带了一个EXE文
件。可以先看看。
先复习一下,A*算法的核心是估价函数f(n),它包括g(n)和h(n)两部
分。g(n) 是已经走过的 代价,h(n)是n到目标的估计代价。在这个
例子中g(n)表示在状态空间从起始节点到 n节点的 深度,h(n)表示n
节点所在地图的位置到目标位置的直线距离。啊!一个是状态空间,
一个是 实际的地图,不要搞错了。再详细点说,有一个物体A,在地
图上的坐标是(xa,ya),A所要到 达的目标b的坐标是(xb,yb)。则开
始搜索时,设置一个起始节点1,生成八个子节点2 - 9 因 为有八个
方向。如图:
仔细看看节点1、9、17的g(n)和h(n)是怎么计算的。现在应该知道了
下面程序中的f(n)是如何 计算的吧。开始讲解源程序了。其实这个
程序是一个很典型的教科书似的程序,也就是说只要 你看懂了上面
的伪程序,这个程序是十分容易理解的。不过他和上面的伪程序有一
些的不同, 我在后面会提出来。
先看搜索主函数:
        void AstarPathfinder::FindPath(int sx, int sy, int dx, int dy)
        {
           NODE *Node, *BestNode;
           int TileNumDest;
           //得到目标位置,作判断用
           TileNumDest = TileNum(sx, sy);
           //生成Open和Closed表
           OPEN=( NODE* )calloc(1,sizeof( NODE ));
           CLOSED=( NODE* )calloc(1,sizeof( NODE ));
           //生成起始节点,并放入Open表中
           Node=( NODE* )calloc(1,sizeof( NODE ));
           Node->g = 0;
           //这是计算h值
           Node->h = (dx-sx)*(dx-sx) + (dy-sy)*(dy-sy);  // should really us
e s
qrt().     //这是计算f值,即估价值
           Node->f = Node->g+Node->h;
           Node->NodeNum = TileNum(dx, dy);
           Node->x = dx;
           Node->y = dy;
           OPEN->NextNode=Node;        // make Open List point to first node

           for (;;)
           {    //从Open表中取得一个估价值最好的节点
                BestNode=ReturnBestNode();
                //如果该节点是目标节点就退出
                if (BestNode->NodeNum == TileNumDest)    // if we've found t
he
end, break and finish                   break;
                //否则生成子节点
                GenerateSuccessors(BestNode,sx,sy);
           }
           PATH = BestNode;
        }
再看看生成子节点函数 GenerateSuccessors:
        void AstarPathfinder::GenerateSuccessors(NODE *BestNode, int dx, int
 dy
)       {
           int x, y;
           //哦!依次生成八个方向的子节点,简单!
                            // Upper-Left
           if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y-TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Upper
           if ( FreeTile(x=BestNode->x, y=BestNode->y-TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Upper-Right
           if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y-TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Right
           if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Lower-Right
           if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y+TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Lower
           if ( FreeTile(x=BestNode->x, y=BestNode->y+TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Lower-Left
           if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y+TILESIZE) )
              GenerateSucc(BestNode,x,y,dx,dy);
                            // Left
           if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y) )
              GenerateSucc(BestNode,x,y,dx,dy);
        }
看看最重要的函数GenerateSucc:
        void AstarPathfinder::GenerateSucc(NODE *BestNode,int x, int y, int
dx,
 int dy)        {
           int g, TileNumS, c = 0;
           NODE *Old, *Successor;
           //计算子节点的 g 值
           g = BestNode->g+1;       // g(Successor)=g(BestNode)+cost of gett
ing
 from BestNode to Successor        TileNumS = TileNum(x,y);  // identificati
on
purposes           //子节点再Open表中吗?
           if ( (Old=CheckOPEN(TileNumS)) != NULL ) // if equal to NULL then
 no
t in OPEN list, else it returns the Node in Old    {
                //若在
                for( c = 0; c <8; c++) if( BestNode->Child[c] == NULL ) // A
dd
Old to the list of BestNode's Children (or Successors).                 brea
k;
                BestNode->Child[c] = Old;
                //比较Open表中的估价值和当前的估价值(只要比较g值就可以了)
                if ( g g )  // if our new g value is Parent = BestNode;
                        Old->g = g;
                        Old->f = g + Old->h;
                }
           }
           else //在Closed表中吗?
           if ( (Old=CheckCLOSED(TileNumS)) != NULL ) // if equal to NULL th
en
not in OPEN list, else it returns the Node in Old          {
                //若在
                for( c = 0; c<8; c++) if ( BestNode->Child[c] == NULL ) // A
dd
Old to the list of BestNode's Children (or Successors).                 brea
k;
                BestNode->Child[c] = Old;
                //比较Closed表中的估价值和当前的估价值(只要比较g值就可以了)

                if ( g g )  // if our new g value is Parent = BestNode;
                    Old->g = g;
                    Old->f = g + Old->h;
                    //再依次更新Old的所有子节点的估价值
                    PropagateDown(Old);  // Since we changed the g value of
Old
, we need                                        // to propagate this new va
lue
 downwards, i.e.                                         // do a Depth-First
 tr
aversal of the tree!            }
           }
           else//不在Open表中也不在Close表中
           {
                //生成新的节点
                Successor = ( NODE* )calloc(1,sizeof( NODE ));
                Successor->Parent = BestNode;
                Successor->g = g;
                Successor->h = (x-dx)*(x-dx) + (y-dy)*(y-dy);  // should do
sqr
t(), but since we don't really          Successor->f = g+Successor->h;     /
/ c
are about the distance but just which branch looks              Successor->x
 =
x;                 // better this should suffice. Anyayz it's faster.
uccessor->y = y;                Successor->NodeNum = TileNumS;
                //再插入Open表中,同时排序。
                Insert(Successor);     // Insert Successor on OPEN list wrt
f
                for( c =0; c <8; c++) if ( BestNode->Child[c] == NULL ) // A
dd
Old to the list of BestNode's Children (or Successors).
bre
ak;             BestNode->Child[c] = Successor;
           }
        }
哈哈!A*算法我懂了!当然,我希望你有这样的感觉!不过我还要再
说几句。仔细看看这个程 序,你会发现,这个程序和我前面说的伪
程序有一些不同,在GenerateSucc函数中,当子节点 在Closed表中
时,没有将子节点从Closed表中删除并放入Open表中。而是直接的重
新的计算该 节点的所有子节点的估价值(用PropagateDown函数)。
这样可以快一些!另当子节点在 Open 表和Closed表中时,重新的计
算估价值后,没有重新的对Open表中的节点排序,我有些想不通,
为什么不排呢?:-(,会不会是一个小小的BUG。你知道告诉我好
吗?
好了!主要的内容都讲完了,还是完整仔细的看看源程序吧!希望我所的对你有一点帮
助,
一 点点也可以。如果你对文章中的观点有异议或有更好的解释都告诉我。                                        

你可能感兴趣的:(深入A*算法----浅析A*算法在搜索最短路径中的应用)