判断有向图是否存在环的2种方法(深度遍历,拓扑排序)

https://blog.csdn.net/login_sonata/article/details/78002042

解法一:深度遍历
假设图以邻接矩阵表示,一条深度遍历路线中如果有结点被第二次访问到,那么有环。我们用一个变量来标记某结点的访问状态(未访问,访问过,其后结点都被访问过),然后判断每一个结点的深度遍历路线即可。
因为采用邻接矩阵存储,一般至少需要将矩阵中元素的一半给过一下,由于矩阵元素个数为n^2, 因此时间复杂度就是O(n^2)。如果采用邻接表存储,则只存储了边结点(e条边,无向图是2e条边),加上表头结点为n(也就是顶点个数),因此时间复杂度为O(n+e)。
解法二:拓扑排序
方法是重复寻找一个入度为0的顶点,将该顶点从图中删除(即放进一个队列里存着,这个队列的顺序就是最后的拓扑排序,具体见程序),并将该结点及其所有的出边从图中删除(即该结点指向的结点的入度减1),最终若图中全为入度为1的点,则这些点至少组成一个回路。
采用邻接矩阵存储时,遍历二维数组,求各顶点入度的时间复杂度是O(n^2)。 遍历所有结点,找出入度为0的结点的时间复杂度是O(n)。对于n个入度为0的结点,删除他们的出边的复杂度为O(n^2)。 所以总的复杂度为O(n^2)。
对于邻接表,遍历所有边,求各顶点入度的时间复杂度是O(e),即边的个数。遍历所有结点,找出入度为0的结点的时间复杂度是O(n),即顶点的个数。遍历所有边,删除入度为0的结点的出边的复杂度为O(e),即边的个数。所以总的时间复杂度是O(n+e)。
Java实现如下:
https://blog.csdn.net/login_sonata/article/details/78002042

你可能感兴趣的:(图论-环与根)