- 数据集格式转换——json2txt、xml2txt、txt2json【复制就能用】
kay_545
YOLO11改进有效涨点python人工智能机器学习
秋招面试专栏推荐:深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转本专栏所有程序均经过测试,可成功执行专栏地址:YOLO11入门+改进涨点——点击即可跳转欢迎订阅目录json2txt脚本xml2txttxt2json
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- 还在为找图发愁?图生生AI以图生图,一键生成专属风格!
图生生
人工智能aiAI作画图生生
你是否也遇到过这样的烦恼:想为文章配图,却找不到风格合适的图片?设计海报时,灵感枯竭,不知从何下手?看到喜欢的图片风格,却无法应用到自己的作品中?别担心,图生生AI生图来帮你!只需上传一张图片,AI就能自动生成相似风格的图片,让你轻松拥有专属图库!图生生AI生图是一款基于人工智能技术的图片生成工具,它能够深度学习和理解图片的风格、色彩、构图等元素,并以此为基础生成全新的图片。无论你是设计师、自媒体
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 远程调试Python脚本之ptvsd
工头阿乐
PyTorch深度学习python开发语言
深度学习文章目录深度学习前言前言有时候需要远程调试Python脚本,怎么办呢…以下这段代码用于远程调试Python脚本,特别是通过VisualStudioCode(VSCode)的远程调试功能。它会在指定的服务器IP和端口上等待调试器的连接。#检查是否提供了服务器IP和端口ifargs.server_ipandargs.server_port:#远程调试-参见https://code.visual
- yolo模型coco数据集详解
工头阿乐
深度学习YOLO
深度学习文章目录深度学习前言前言instances_train2017.json和instances_val2017.json文件均分为五大部分,这五部分对应的关键字分别为info、licenses、images、annotations、categories。{"info":info,"licenses":[license1,license2,license3,...],"images":[ima
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- 聊聊Python都能做些什么
·零落·
Python入门到掌握python开发语言
文章目录一、Python简介二、Python都能做些什么1.Web开发2.数据分析和人工智能3.自动化运维和测试4.网络爬虫5.金融科技三、Python开源库都有哪些1.Web开发2.数据分析和科学计算3.机器学习和深度学习4.网络爬虫5.自动化和测试6.其他常用库四、相关链接一、Python简介Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它最初由GuidovanRossu
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- 理解深度学习1-简介
shangjg3
PyTorch深度学习实战深度学习人工智能
人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是AI的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与AI同义。深度神经网络是一类机器学习模型,将其应用到数据上的过程称为深度学习。目前,深度网络是最强大和最实用的机器学习模型之一,常见于日常生活中。我们常常用自然语言处理(Nat
- 【Java】已解决:`java.sql.SQLSyntaxErrorException: SQL`
屿小夏
javasql开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- AIGC带来数据革命:R语言如何成为数据科学家的秘密武器?
程序边界
AIGCr语言开发语言
文章目录一、R语言的基础特性1.1R语言的起源与发展1.2R语言的核心优势二、R语言在AIGC中的应用场景2.1数据预处理与清洗2.2文本分析与生成2.3机器学习与模型构建2.4数据可视化与报告生成三、R语言在AIGC中的具体案例3.1金融数据分析与预测3.2医疗数据分析与建模3.3社交媒体数据分析与情感分析四、R语言在AIGC中的未来展望4.1与深度学习框架的集成4.2与云计算平台的集成4.3与
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- C#学习笔记(3): 调用YOLOv8
playerofIE
c#学习笔记YOLOpython
最近做的项目需要C#编写上位机程序,同时也要使用yolo进行深度学习检测。使用pythonnet调用写好的py文件,C#代码如下:Runtime.PythonDLL="python310.dll";PythonEngine.Initialize();using(Py.GIL()){dynamicsys=Py.Import("sys");dynamictorch=Py.Import("torch")
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- llama.cpp 和 LLM(大语言模型)
这个懒人
llama语言模型人工智能
llama.cpp和LLM(大语言模型)的介绍,以及两者的关联与区别:1.LLM(LargeLanguageModel,大语言模型)定义:LLM是基于深度学习技术(如Transformer架构)构建的超大参数量的自然语言处理模型。它通过海量文本数据训练,能够生成连贯、语义丰富的文本,完成问答、创作、推理等任务。特点:参数规模大:如GPT-3(1750亿参数)、Llama-65B(650亿参数)等。
- 构建未来智能:在Mojo模型中自定义模型架构的艺术
2401_85761003
mojo架构
构建未来智能:在Mojo模型中自定义模型架构的艺术在深度学习的世界里,模型架构的设计往往决定了算法的性能和适用性。Mojo模型,作为一个假想中的高级机器学习框架,允许用户实现自定义的模型架构来解决特定的问题。本文将深入探讨如何在Mojo模型中实现自定义模型架构,并提供详细的步骤和代码示例,以帮助读者掌握这一强大的技术。自定义模型架构的重要性灵活性自定义模型架构提供了设计适合特定问题需求的模型的灵活
- 大模型与自然语言理解(NLU):差异与联系
技术流 Gavin
AIoTpython语言模型ai
近年来,人工智能领域取得了显著进展,尤其是在自然语言处理(NLP)方面。大模型和自然语言理解(NLU)作为NLP的两个重要分支,常常被提及,但它们之间存在着本质区别。1.定义与目标大模型:通常指拥有庞大参数规模(数十亿甚至数千亿)的深度学习模型,例如GPT-3、LaMDA等。它们通过海量文本数据进行训练,旨在学习语言的统计规律,并能够生成流畅、连贯的文本。NLU:是NLP的一个子领域,专注于让机器
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- 学习pytorch
阿什么名字不会重复呢
学习pytorch人工智能
学习PyTorch是一个很好的选择,尤其是如果你对深度学习和机器学习感兴趣。以下是一个详细的学习计划,可以帮助你系统地掌握PyTorch的基本概念和应用。学习计划概览学习周期:8周(每周约4-5小时)目标:掌握PyTorch基础,能够实现简单的深度学习模型。第1周:基础知识目标:了解深度学习的基础知识,掌握Python和NumPy基础。任务:学习Python基础(数据类型、控制流、函数、类)。资源
- AI驱动的代码重构与优化技术
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI驱动的代码重构与优化技术概述什么是AI驱动的代码重构与优化?AI驱动的代码重构与优化技术,是指利用人工智能,特别是机器学习和深度学习的算法,对软件代码进行自动分析和改进的技术。这种技术能够通过学习大量的代码样本,识别出代码中的模式、问题和改进点,从而自动完成代码的重构和优化。重构的定义重构(Refactoring)是改进代码内部结构而不改变外部行为的过程。其目的通常是为了提高代码的可读性、可维
- 神经网络模型压缩&实例教程—非结构化剪枝
程序先锋
《python深度学习》笔记神经网络剪枝深度学习
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)3.1随机剪枝weight3.2L1范数剪枝bias4.总结最先进的深度学习技术依赖于难以部署的过度参数化模型。相反,已知生物神经网络使用高效的稀疏连接。为了在不牺牲准确性的情况下减少内存、电池和硬件消耗,通过减少模型中的参数数量来确定压缩模型的最佳技术是很重要的。这反过来又允许您在设备上部署轻量级模型,并通过设备上的私
- 深度学习模型压缩:非结构化剪枝与结构化剪枝的定义与对比
从零开始学习人工智能
深度学习剪枝人工智能
****在深度学习中,模型压缩是优化模型性能、降低存储和计算成本的重要技术之一。其中,剪枝(Pruning)是最常用的方法之一。根据剪枝的粒度和目标,剪枝可以分为非结构化剪枝(UnstructuredPruning)和结构化剪枝(StructuredPruning)。本文将详细介绍这两种剪枝方法的定义,并通过对比帮助读者更好地理解它们的差异。1.非结构化剪枝(UnstructuredPruning
- 从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略
一键难忘
剪枝深度学习算法知识蒸馏
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中文章目录从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略1.
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&