- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- 文档处理的数字化和革新 - ComIDP
在当今快节奏的环境中,企业不断寻求创新解决方案以精简操作并自动化手动任务。ComIDP是由ComPDFKit提供的先进的智能文档处理(IDP)解决方案,它作为一个强大工具,旨在改变组织管理文档的方式。什么是智能文档处理?智能文档处理是一种结合了人工智能(AI)、机器学习(ML)和光学字符识别(OCR)的技术,用于自动提取各种文档格式中的有价值信息。与传统的数据捕获方法需要大量手动干预不同,IDP利
- Python数据可视化自动化工具:让数据跃然纸上
Echo_Wish
Python算法Python笔记从零开始学Python人工智能信息可视化python自动化
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- 【模型调优的深入分析与Python实践】
蝉叫醒了夏天
机器学习python开发语言模型调优
模型调优的深入分析与Python实践一、模型调优的定义与目标模型调优(ModelTuning)是通过系统化调整机器学习模型的超参数和结构参数,使模型在特定数据集上达到最佳性能的过程。其核心目标是在以下两者间找到平衡:泛化能力∝1过拟合风险\text{泛化能力}\propto\frac{1}{\text{过拟合风险}}泛化能力∝过拟合风险1二、调优注意事项1.数据层面确保训练集/验证集/测试集的独立
- 机器学习模型-从线性回归到神经网络
Earth explosion
机器学习线性回归神经网络
在当今的数据驱动世界中,机器学习模型是许多应用程序的核心。无论是推荐系统、图像识别,还是自动驾驶汽车,机器学习技术都在背后发挥着重要作用。在这篇文章中,我们将探索几种基础的机器学习模型,并了解它们的基本原理和应用场景。1.线性回归基本原理线性回归是最简单的机器学习模型之一。它旨在找到一个最佳拟合线来预测目标变量(通常是连续值)。线性回归假设输入变量和输出变量之间存在线性关系,其数学表达式为:[y=
- 神经网络探秘:原理、架构与实战案例
二川bro
智能AI神经网络人工智能深度学习
神经网络探秘:原理、架构与实战案例前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc在人工智能的浪潮中,神经网络作为核心驱动力之一,正引领着技术革新与产业变革。本文旨在深入剖析神经网络的原理、常见架构,并通过一个实际的代码案例,带领读者亲手实践神经网络的构建与训练过程。无论你是机器学习初学者,还
- 机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
- FileNotFoundError: [WinError 2] 系统找不到指定的文件。: ‘UIAutomationCore.dll‘解决方案
爱编程的喵喵
Python基础课程pythonFileNotFoundErrUIAutomation解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了FileNotFoundError:
- Python训练的机器学习模型【保存】 和【加载】的方法?
福葫芦
python机器学习开发语言
一.为什么要保存训练好的模型由于传统训练机器学习模型,需要耗费大量的人力和资源。因此,将训练好的模型保存成为一件特别重要的事情。现有的机器学习模型保存方法有三种,分别为使用pickle(通用)、joblib(大型模型)、HDF5(存储深度学习模型的权重)二.Python保存模型的三种方式1.方式一:pickle模块【通用】pickle是Python标准库中的一个模块,它可以将Python对象序列化
- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- 保姆级别&使用Python实现“机器学习“案例
dami_king
随笔python机器学习开发语言
从安装到运行手把手教学,保证不迷路~零基础友好版教程第一步:安装必备工具包别慌!这里有两种安装方式,选你顺手的方式1:用代码自动安装(推荐新手)直接在你的Python代码最前面加这几行,运行时会自动安装:#把这坨代码贴在文件最前面!importsysimportsubprocess#需要装的包列表packages=['numpy','pandas','matplotlib','scikit-lea
- 智能制造中的工业大数据分析实践
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
智能制造中的工业大数据分析实践关键词:智能制造,工业大数据,数据分析,机器学习,深度学习,预测性维护,质量控制,生产优化文章目录智能制造中的工业大数据分析实践1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1工业大数据2.2工业大数据分析2.3智能制造3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 00_01 python机器学习_环境搭建
辛 欣
机器学习pythonsklearn
机器学习环境的搭建Windows+Python3Python3下载地址python环境设置安装尽量安装在自定义目录下,方便查找,其他选项都用默认值就行.安装成功后,cmd里输入python校验.下载用于机器学习的虚拟环境的包>python-mpipvirtualenv初始化虚拟环境#进入到自定义要保存环境的位置>cdxxxxxx#.venv是新创建的用于存放机器学习必要包的文件夹,名字可以随意起,
- 机器学习入门指南:从 TensorFlow 到 PyTorch
6v6-博客
机器学习tensorflowpytorch
机器学习入门指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。本文将从基础概念入手,介绍机器学习的核心知识,并带你快速上手两大主流框架:TensorFlow和PyTorch。机器学习基础什么是机器学习?机器学习是一种通过数据训练模型,使计算机能够自动学习和改进的技术。它主要分
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- QP 问题(Quadratic Programming, 二次规划)
BineHello
算法人工智能强化学习自动驾驶线性代数
QP问题(QuadraticProgramming,二次规划)是什么?QP(QuadraticProgramming,二次规划)是一类优化问题,其中目标函数是二次型函数,约束条件可以是线性等式或不等式。QP问题是线性规划(LP,LinearProgramming)的扩展形式,广泛应用于最优控制、机器学习、金融优化、信号处理等领域。一、QP问题的数学定义标准形式的QP问题如下:minx12xTQx
- 机器学习中的谱方法(Spectral Methods)与核方法(Kernel Methods)
Cachel wood
python机器学习和数据挖掘机器学习人工智能djangosklearnpython开发语言
文章目录机器学习中的谱方法(SpectralMethods)与核方法(KernelMethods)1.谱方法(SpectralMethods)核心思想关键技术示例:谱聚类2.核方法(KernelMethods)核心思想关键技术示例:核SVM3.谱方法与核方法的对比4.核心联系5.如何选择?6.总结机器学习中的谱方法(SpectralMethods)与核方法(KernelMethods)谱方法和核方
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 考研复习之记忆方法
herosunly
考名校研究生经验分享考研
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- OPPO机器学习算法岗(AI智能体)内推
飞300
人工智能业界资讯
专注于以端设备为中心的AI智能体研究与应用,研究方向包括但不限于智能体与多智能体框架、大模型推理与规划、大模型工具使用等。1、负责大模型驱动的AI智能体框架的实现、评估与优化,并参与构建产品原型;2、设计微调方案、适配算法和调优工程方案,结合智能体应用,实现最佳效果与性能;3、跟踪与研究AI智能体相关前沿技术,并针对大模型推理与规划、工具使用、结构化输出等提出创新性方案。推荐码:X3448036
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end