opencv3.0 调用函数,测试训练svm生成的分类器

#pragma  once
#pragma  execution_character_set( "utf-8" )
#include  "svm_hog_test_opencv3.h"
#include 
using  namespace  cv;
using  namespace  cv::ml;
using  namespace  std;
void  getFiles( string  path ,  vector < string >&  files )
{
        struct  _finddata_t  fileinfo;
        string  str;
        long  fileHandle =  _findfirst (str.assign( path ).append( "/*" ).c_str(), &fileinfo);
        if  (fileHandle == -1){
               return ;
       }
        while  (! _findnext (fileHandle, &fileinfo)){
               if  ((fileinfo.attrib &   _A_SUBDIR ))
              {
                      if  (strcmp(fileinfo.name,  "." ) != 0 && strcmp(fileinfo.name,  ".." ) != 0)
                            getFiles(str.assign( path ).append( "/" ).append(fileinfo.name),  files );
              }
               else
              {
                      files .push_back(str.assign( path ).append( "/" ).append(fileinfo.name));
              }
       }
       _findclose(fileHandle);
}
int  main( int  argc ,  char **  argv )
{
        //cv::Mat input = cv::imread(argv[1]);
       
        //批量测试图片
        //加载分类器
        char  * filePath_imgs =  argv [1]; //分类器路径
        vector string > files_img;
       getFiles(filePath_imgs, files_img);
        int  size_img = files_img.size();
        //int flag_classes = 10;//测试集标签(属于哪一类)
        ofstream  in;
       in.open( "corrct_~.txt" ,  ios ::trunc); //储存测试结果
        if  (size_img > 0){
               int  num_corrct = 0;
               int  sum_images = 0 ; //测试图片总数
               for  ( int  j = 0; j < size_img;j++){
                     cout << files_img[j].c_str() << endl;
                     cv:: Mat  input = cv::imread(files_img[j].c_str());
                      if  (input.empty()){
                            return  0;
                     }
                      else {
                           sum_images++;
                            //加载svm分类器
                            char  * filePath =  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls" ; //分类器路径
                            vector string > files;
                           getFiles(filePath, files);
                            int  size = files.size();
                           cv:: Mat  res, gray_img;
                           cv::resize(input, res, cv:: Size (64, 64));
                            //cv::cvtColor(res, gray_img, cv::COLOR_BGR2GRAY);
                            string  num_class;
                            for  ( int  i = 0; i < size; i++)
                           {
                                  cout <<  "get image: "  << files[i].c_str() << endl;
                                  cv:: Ptr SVM > svm =  SVM ::load< SVM >(files[i].c_str());
                                  cv:: HOGDescriptor  d = cv:: HOGDescriptor (cv:: Size (64, 64), cv:: Size (16, 16), cv:: Size (16, 16), cv:: Size (8, 8), 9);
                                  std:: vector < float > descriptors;
                                  d.compute(res, descriptors);
                      
                                   float  result_lable = svm->predict(descriptors);
                                   //float result_probability = svm->p
                                   //printf("the character belongs to:%f_classes\n", result_lable);
                                   if  (result_lable > -1){
                                         num_class = files[i].c_str();
                                         i = size;
                                  }
                           }
                            //printf("the character belongs to:%s_classes\n", num_class);
                            //显示检测结果
                           cv:: Mat  img_show;
                
                            if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svmdot_20180206.xml"   ){
                                 
                                  
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm%_20180206.xml" ){
                       
                                  
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svmx_20180206.xml" ){
                            /*     img_show = cv::imread("E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/logo_charactor/12.jpg");
                                  cv::imshow("result", img_show);
                                  cv::waitKey(0);*/
              
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm+_20180206.xml" ){
                       
                                  
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm-_20180206.xml" ){
                             
                                  
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm(_20180206.xml" ){
                              
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm)_20180206.xml" ){
                       
                           
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm=_20180206.xml" ){
                       
                           }
                            else  if  (num_class ==  "E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/20180206_xmls/svm~_20180206.xml" ){ //svm~_20180206
                            /*     img_show = cv::imread("E:/opencv_studydocumence/opencv_study/HOG+SVM/code/Release/logo_charactor/18.jpg");
                                  cv::imshow("result", img_show);
                                  cv::waitKey(0);*/
                                  num_corrct++;
                           }
                     }
              }
               float  ratio =  ( float )num_corrct / ( float )sum_images; //计算正确率
              in << ratio << endl;
       }
        else  {
       
              std::cout <<  "can't load images!\n" ;
               //printf("can't load images!\n");
       }
        //cv::Mat res, gray_img;
        //cv::resize(input, res, cv::Size(64, 64));
        ////cv::cvtColor(res, gray_img, cv::COLOR_BGR2GRAY);
        //string num_class;
        //for (int i = 0; i < size; i++)
        //{
        //     cout << "get image: " << files[i].c_str() << endl;
       std::system( "pause" );
        return  0;
}

你可能感兴趣的:(opencv3.0 调用函数,测试训练svm生成的分类器)