本文首发于我的个人博客:尾尾部落
CREATE、ALTER、DROP、TRUNCATE、COMMENT、RENAME
SELECT、INSERT、UPDATE、DELETE、MERGE、CALL、EXPLAIN PLAN、LOCK TABLE
内连接是一种一一映射关系,就是两张表都有的才能显示出来
SELECT A.PK AS A_PK,A.Value AS A_Value,B.PK AS B_PK,B.Value AS B_Value
FROM table_a A
INNER JOIN table_b B
ON A.PK = B.PK;
左连接是左边表的所有数据都有显示出来,右边的表数据只显示共同有的那部分,没有对应的部分只能补空显示,所谓的左边表其实就是指放在left join的左边的表
SELECT A.PK AS A_PK,A.Value AS A_Value,B.PK AS B_PK,B.Value AS B_Value
FROM table_a A
LEFT JOIN table_b B
ON A.PK = B.PK;
右连接正好是和左连接相反的,这里的右边也是相对right join来说的,在这个右边的表就是右表
SELECT A.PK AS A_PK,A.Value AS A_Value,B.PK AS B_PK,B.Value AS B_Value
FROM table_a A
RIGHT JOIN table_b B
ON A.PK = B.PK;
查询出左表和右表所有数据,但是去除两表的重复数据
因为mysql不支持全连接,只能用以下代码实现效果,含义是左连接+右连接+去重=全连接:
SELECT A.PK AS A_PK,A.Value AS A_Value,B.PK AS B_PK,B.Value AS B_Value
FROM table_a A
LEFT JOIN table_b B
ON A.PK = B.PK
UNION
SELECT A.PK AS A_PK,A.Value AS A_Value,B.PK AS B_PK,B.Value AS B_Value
FROM table_a A
RIGHT JOIN table_b B
ON A.PK = B.PK;
没有 WHERE 子句的交叉联接将产生联接所涉及的表的笛卡尔积。第一个表的行数乘以第二个表的行数等于笛卡尔积结果集的大小。
用法:A CROSS JOIN B (不要ON)
数据库左连接、右连接、内连接、全连接笔记
关系数据库中的关系是要满足一定要求的,满足不同程度要求的为不同范式。
详细内容参考:知乎——解释一下关系数据库的第一第二第三范式?_刘慰
索引是一种数据结构 。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。
B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。
由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。
B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。
数据库如果支持事务的操作,那么就具备以下四个特性:
数据库事务的隔离级别有4个,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。
脏读 | 不可重复读 | 幻读 | |
---|---|---|---|
Read uncommitted | √ | √ | √ |
Read committed–Sql Server , Oracle | × | √ | √ |
Repeatable read–MySQL | × | √ | |
Serializable | × | × | × |
公司发工资了,领导把5000元打到singo的账号上,但是该事务并未提交,而singo正好去查看账户,发现工资已经到账,是5000元整,非常高兴。可是不幸的是,领导发现发给singo的工资金额不对,是2000元,于是迅速回滚了事务,修改金额后,将事务提交,最后singo实际的工资只有2000元,singo空欢喜一场。
出现上述情况,即我们所说的脏读,两个并发的事务,“事务A:领导给singo发工资”、“事务B:singo查询工资账户”,事务B读取了事务A尚未提交的数据。
当隔离级别设置为Read uncommitted时,就可能出现脏读,如何避免脏读,请看下一个隔离级别。
singo拿着工资卡去消费,系统读取到卡里确实有2000元,而此时她的老婆也正好在网上转账,把singo工资卡的2000元转到另一账户,并在singo之前提交了事务,当singo扣款时,系统检查到singo的工资卡已经没有钱,扣款失败,singo十分纳闷,明明卡里有钱,为何…
出现上述情况,即我们所说的不可重复读,两个并发的事务,“事务A:singo消费”、“事务B:singo的老婆网上转账”,事务A事先读取了数据,事务B紧接了更新了数据,并提交了事务,而事务A再次读取该数据时,数据已经发生了改变。
当隔离级别设置为Read committed时,避免了脏读,但是可能会造成不可重复读。
大多数数据库的默认级别就是Read committed,比如Sql Server , Oracle。如何解决不可重复读这一问题,请看下一个隔离级别。
当隔离级别设置为Repeatable read时,可以避免不可重复读。当singo拿着工资卡去消费时,一旦系统开始读取工资卡信息(即事务开始),singo的老婆就不可能对该记录进行修改,也就是singo的老婆不能在此时转账。
虽然Repeatable read避免了不可重复读,但还有可能出现幻读。
singo的老婆工作在银行部门,她时常通过银行内部系统查看singo的信用卡消费记录。有一天,她正在查询到singo当月信用卡的总消费金额(select sum(amount) from transaction where month = 本月)为80元,而singo此时正好在外面胡吃海塞后在收银台买单,消费1000元,即新增了一条1000元的消费记录(insert transaction … ),并提交了事务,随后singo的老婆将singo当月信用卡消费的明细打印到A4纸上,却发现消费总额为1080元,singo的老婆很诧异,以为出现了幻觉,幻读就这样产生了。
注:MySQL的默认隔离级别就是Repeatable read。
Serializable是最高的事务隔离级别,同时代价也花费最高,性能很低,一般很少使用,在该级别下,事务顺序执行,不仅可以避免脏读、不可重复读,还避免了幻像读。
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数据,也被称之为脏读(Dirty Read)。
这是大多数数据库系统的默认隔离级别(但不是MySQL默认的)。它满足了隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别 也支持所谓的不可重复读(Nonrepeatable Read),因为同一事务的其他实例在该实例处理其间可能会有新的commit,所以同一select可能返回不同结果。
这是MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。简单的说,幻读指当用户读取某一范围的数据行时,另一个事务又在该范围内插入了新行,当用户再读取该范围的数据行时,会发现有新的“幻影” 行。InnoDB和Falcon存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)机制解决了该问题。
这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争。
在Read Uncommitted级别下,读操作不加S锁;
在Read Committed级别下,读操作需要加S锁,但是在语句执行完以后释放S锁;
在Repeatable Read级别下,读操作需要加S锁,但是在事务提交之前并不释放S锁,也就是必须等待事务执行完毕以后才释放S锁。
在Serialize级别下,会在Repeatable Read级别的基础上,添加一个范围锁。保证一个事务内的两次查询结果完全一样,而不会出现第一次查询结果是第二次查询结果的子集。
存储过程是一个预编译的SQL语句,优点是允许模块化的设计,就是说只需要创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次SQL,使用存储过程比单纯SQL语句执行要快。
1)存储过程是预编译过的,执行效率高。
2)存储过程的代码直接存放于数据库中,通过存储过程名直接调用,减少网络通讯。
3)安全性搞,执行存储过程需要有一定权限的用户。
4)存储过程可以重复使用,减少数据库开发人员的工作量。
1)调试麻烦,但是用 PL/SQL Developer 调试很方便!弥补这个缺点。
2)移植问题,数据库端代码当然是与数据库相关的。但是如果是做工程型项目,基本不存在移植问题。
3)重新编译问题,因为后端代码是运行前编译的,如果带有引用关系的对象发生改变时,受影响的存储过程、包将需要重新编译(不过也可以设置成运行时刻自动编译)。
4)如果在一个程序系统中大量的使用存储过程,到程序交付使用的时候随着用户需求的增加会导致数据结构的变化,接着就是系统的相关问题了,最后如果用户想维护该系统可以说是很难很难、而且代价是空前的,维护起来更麻烦。
视图是从一个或几个基本表(或视图)导出的表。它与基本表不同,是一个虚表。数据库中只存放视图的定义,而不存放视图对应的数据,这些数据仍存放在原来的基本表中。所以一旦基本表中的数据发生变化,从视图中查询出的数据也就随之改变了。从这个意义上讲,视图就像一个窗口,透过它可以看到数据库中自己感兴趣的数据及其变化。
视图一经定义,就可以和基本表一样被查询、被删除。也可以在一个视图上再定义新的视图,但对视图的更新(增、删、改)操作则有一定的限制。
游标是系统为用户开设的一个数据缓冲区,存放SQL语句的执行结果,每个游标区都有一个名字。用户可以通过游标逐一获取记录并赋给主变量,交由主语言进一步处理。
触发器是用户定义在关系表上的一类由事件驱动的特殊过程。一旦定义,触发器将被保存在数据库服务器中。任何用户对表的增、删、改操作均由服务器自动激活相应的触发器,在关系数据库管理系统核心层进行集中的完整性控制。触发器类似于约束,但是比约束更加灵活,可以实施更为复杂的检查和操作,具有更精细和更强大的数据控制能力。
三者都表示删除,但是三者有一些差别:
Delete | Truncate | Drop | |
---|---|---|---|
类型 | 属于DML | 属于DDL | 属于DDL |
回滚 | 可回滚 | 不可回滚 | 不可回滚 |
删除内容 | 表结构还在,删除表的全部或者一部分数据行 | 表结构还在,删除表中的所有数据 | 从数据库中删除表,所有的数据行,索引和权限也会被删除 |
删除速度 | 删除速度慢,需要逐行删除 | 删除速度快 | 删除速度快 |
因此,在不再需要一张表的时候,用drop;在想删除部分数据行时候,用delete;在保留表而删除所有数据的时候用truncate。
将主数据库中的DDL和DML操作通过二进制日志(BINLOG)传输到从数据库上,然后将这些日志重新执行(重做);从而使得从数据库的数据与主数据库保持一致。
Binary log:主数据库的二进制日志
Relay log:从服务器的中继日志
第一步:master在每个事务更新数据完成之前,将该操作记录串行地写入到binlog文件中。
第二步:salve开启一个I/O Thread,该线程在master打开一个普通连接,主要工作是binlog dump process。如果读取的进度已经跟上了master,就进入睡眠状态并等待master产生新的事件。I/O线程最终的目的是将这些事件写入到中继日志中。
第三步:SQL Thread会读取中继日志,并顺序执行该日志中的SQL事件,从而与主数据库中的数据保持一致。
获取最新资讯,请关注微信公众号:南强说晚安