机器学习(十):Apriori算法

 

 

四、代码实现(python)

以下代码来自Peter Harrington《Machine Learing in Action》。
代码如下(保存为apriori.py)

# -- coding: utf-8 --
from numpy import *

def loadDataSet():
    return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

def createC1(dataSet):
    # 该函数构建集合C1:候选1-项集
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])

    C1.sort()
    return map(frozenset, C1)

def scanD(D, Ck, minSupport):
    # 该函数接收3个参数,分别是数据集、候选k-项集、支持度阈值;该函数用于生成频繁项集
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                if not ssCnt.has_key(can): ssCnt[can]=1
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []                                # retList存储大于支持度阈值的候选1-项集,即频繁1-项集
    supportData = {}                            # supportDatacunc存储各候选1-项集的支持度
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minSupport:
            retList.insert(0,key)
        supportData[key] = support
    return retList, supportData

def aprioriGen(Lk, k):
    # 该函数接收2个参数,分别是频繁(k-1)-项集、k;该函数用于生成候选项集
    retList = []                                 # 存储候选k-项集
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk):
            L1 = list(Lk[i])[:k-2]
            L2 = list(Lk[j])[:k-2]
            L1.sort()
            L2.sort()
            if L1==L2:
                retList.append(Lk[i] | Lk[j])    # 前k-2个项相同,合并Lk[i]与Lk[j]
    return retList

def apriori(dataSet, minSupport = 0.5):
    # 该函数接收2个参数,分别是数据集、支持度阈值(默认0.5)
    C1 = createC1(dataSet)                       # 创建候选1-项集
    D = map(set, dataSet)
    L1, supportData = scanD(D, C1, minSupport)   # L1为频繁1-项集,supportData存储各候选1-项集的支持度
    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        # 循环各频繁(k-1)-项集,直至为空
        Ck = aprioriGen(L[k-2], k)               # Ck为候选k-项集
        Lk, supK = scanD(D, Ck, minSupport)      # Lk为频繁k-项集,supportData存储各候选k-项集的支持度
        supportData.update(supK)                 # 存储各候选项集的支持度
        L.append(Lk)                             # 将新生成的频繁k-项集添加进频繁项集数组
        k += 1
    return L, supportData

def generateRules(L, supportData, minConf=0.7):
    # 该函数接收3个参数,分别是频繁项集、包含项集的支持度字典、置信度阈值;
    bigRuleList = []
    for i in range(1, len(L)):
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if (i > 1):
                # 项集数目大于3执行次函数
                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
            else:
                # 频繁2-项集执行此函数
                calcConf(freqSet, H1, supportData, bigRuleList, minConf)
    return bigRuleList

def calcConf(freqSet, H, supportData, brl, minConf=0.7):
    # 该函数接收5个参数,分别是用于计算的频繁项集、此项集各个元素、包含项集的支持度字典、关联规则数组、置信度阈值;
    prunedH = []
    for conseq in H:
        conf = supportData[freqSet]/supportData[freqSet-conseq]   # 计算置信度
        if conf >= minConf:
            print freqSet-conseq,'-->',conseq,'conf:',conf
            brl.append((freqSet-conseq, conseq, conf))
            prunedH.append(conseq)
    return prunedH

def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
    # 该函数接收5个参数,分别是用于计算的频繁项集、此项集各个元素、包含项集的支持度字典、关联规则数组、置信度阈值;
    m = len(H[0])
    if (len(freqSet) > (m + 1)):
        Hmp1 = aprioriGen(H, m+1)                                  # 将H中的元素两两合并
        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)  # 计算置信度
        if (len(Hmp1) > 1):
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)

 

转载于:https://www.cnblogs.com/pengfeiz/p/11393027.html

你可能感兴趣的:(机器学习(十):Apriori算法)