大数据对零售业的影响
现在已经进入了大数据时代,所有的企业必然未来会触碰大数据。零售行业实际上是最早触碰大数据的,而且也是在所有行业中对大数据非常敏感的一个行业,最主要的原因,是因为零售行业与生俱来具有非常好的大数据基础。
中国的零售商们,很多年前就已经对企业的数据,企业内部的营运数据,销售数据进行了有效的存储,这些对于零售商而言,在进入大数据时代以后都是非常宝贵的财富。
销售商品曾经很简单:能够赚取最大利润的零售商往往对消费者的购买趋势能够最快做出反应。因此尽管销售过程也许并不容易,但是销售数据却能轻易获得。不过自从所有零售商都开始采取相同的手段,由于他们互相争抢的消费人群相同,利润也就不再那么容易赚取了。
大数据正在逐步改变这种现象,促进零售业的发展。如今的零售商都会在抢购热潮来临之前(例如最近的电视游戏热潮),使用大数据来预测趋势和判断库存量。
这类大数据既包括对零售商内部销售数据的统计,也包括对其他外部数据的统计,例如社交媒体反馈数据、网页浏览模式数据、电影发布数据和广告购买趋势数据。
随后,零售商就可以利用这些数据来创建预测趋势的模型,例如对消费者购买方式和地点进行预测,从而能够调整库存量,满足消费者的需求。此外,零售商还能够与早期消费者保持联系,为他们提供个性化的实时服务。大数据对消费者购买决定以及零售商反应速度造成的影响,能够帮助零售商提高利润,取得竞争优势。
现在零售行业经常使用到的研究方法。第一个是用户画像功能,它是通过对大量的用户数据进行分析,把它进行分类,比如说年龄、性别、文化、收入,还有消费者的喜好。对消费者进行数据的建模和分析,帮助企业准确的对用户进行定位,进而引导销售。因此,零售商会使用到兴趣图谱,兴趣图谱是把人与人之间共同的兴趣绘画成图谱,分享他们共同的兴趣,找到同类客户相应的核心需求,进而引导零售行业准确地进行营销。
第二个是舆情分析,通过对社交大数据的研究,更好的了解客户对于产品各个方面的感受所带来的一些观点、评价、意见,提高客户的购物感受。
第三是动态定价,是通过对线上线下大量的数据,大量的价格数据进行判断。现在国外越来越多零售行业开始使用电子货架标签,这样通过线上线下价格数据的调整,使电子标签的普及,使动态定价成为了可能。
以上的功能全部是大数据作为支撑,大数据体量增长变得越来越快,最近两年所产生的数据量已经是人类历史数据的总和,五年以后每天甚至每一个小时产生的数据都可能是之前人类历史数据的总和,大数据已经进入到指数级增长的阶段,数据无所不在。
作为全球最大零售商之一,沃尔玛利用大数据来追踪和分析每日成千上万笔交易、库存水平和同行业竞争对手的活动。通过这种做法,沃尔玛能够对实时的市场变化自动做出反应,比如在需求量下降时降低商品价格。沃尔玛还意识到对市场的反应速度越快,能够赚取的收益也就越大。
因此,对能够生成大量度量指标的零售业来说,大数据为赚取利润提供了巨大的便利。然而由于零售业的利润可多可少,竞争也很激烈,这也使大数据成为零售商们赚取利润的首要选择,甚至是保本选择。http://www.cda.cn/view/17816.html