一些在计算机图形学中经常使用的数据结构

BSP:试图将所有的板(在BSP中叫做平面)组织成一棵树,每个平面均将它所在的空间分割为前后两个部分,这两个部分又分别被另外的平面分割成更小的空间……直到最后,达到分割的要求。

http://school.ogdev.net/ArticleShow.asp?id=5935&categoryid=5

The process of constructing a BSP tree is fairly straitforward:

  1. First, select a partition hyperplane. For this dicussion, we will use a 2 dimensional world and our root node will be a line.
  2. Partition all polygons in the world with the initial partition hyperplane, storing them in either the front or back polygon list.
  3. recurse or iterate through the front and back polygon list, creating a new tree node and attaching it the the left or right leaf of the parent node.

http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html

 

四叉树:关注其中的Code

http://www.cnblogs.com/xinxianshi/archive/2011/08/21/2157249.html

/* 一个矩形区域的象限划分::
         
       UL(1)   |    UR(0)
     ----------|-----------
       LL(2)   |    LR(3)
以下对该象限类型的枚举

*/ 
typedef enum 
{ 
    UR = 0, 
    UL = 1, 
    LL = 2, 
    LR = 3 
}QuadrantEnum;

/* 矩形结构 */ 
typedef struct quadrect_t 
{    
    double  left, 
            top, 
            right, 
            bottom; 
}quadrect_t;

/* 四叉树节点类型结构 */ 
typedef struct quadnode_t 
{ 
    quadrect_t    rect;          //节点所代表的矩形区域 
    list_t        *lst_object;   //节点数据, 节点类型一般为链表,可存储多个对象 
    struct  quadnode_t  *sub[4]; //指向节点的四个孩子 
}quadnode_t;

/* 四叉树类型结构 */ 
typedef struct quadtree_t 
{ 
    quadnode_t  *root; 
    int         depth;           // 四叉树的深度                    
}quadtree_t;

 

八叉树 Octree:类比四叉树,看一下它中间的Code

http://blog.csdn.net/timzc/article/details/6060591

template<class T> 
struct OctreeNode 
{ 
    T data; //节点数据
    T xmin,xmax; //节点坐标,即六面体个顶点的坐标
    T ymin,ymax;
    T zmin,zmax;
    OctreeNode  *top_left_front,*top_left_back; //该节点的个子结点 
    OctreeNode  *top_right_front,*top_right_back; 
    OctreeNode  *bottom_left_front,*bottom_left_back; 
    OctreeNode  *bottom_right_front,*bottom_right_back; 
    //节点类构造函数
    OctreeNode(T nodeValue = T(), 
        T xminValue = T(),T xmaxValue = T(), 
        T yminValue = T(),T ymaxValue = T(), 
        T zminValue = T(),T zmaxValue = T(), 
        OctreeNode* top_left_front_Node = NULL, 
        OctreeNode* top_left_back_Node = NULL, 
        OctreeNode* top_right_front_Node = NULL, 
        OctreeNode* top_right_back_Node = NULL, 
        OctreeNode* bottom_left_front_Node = NULL, 
        OctreeNode* bottom_left_back_Node = NULL, 
        OctreeNode* bottom_right_front_Node = NULL, 
        OctreeNode* bottom_right_back_Node = NULL )
        :data(nodeValue), 
        xmin(xminValue),xmax(xmaxValue), 
        ymin(yminValue),ymax(ymaxValue), 
        zmin(zminValue),zmax(zmaxValue), 
        top_left_front(top_left_front_Node), 
        top_left_back(top_left_back_Node), 
        top_right_front(top_right_front_Node), 
        top_right_back(top_right_back_Node), 
        bottom_left_front(bottom_left_front_Node), 
        bottom_left_back(bottom_left_back_Node), 
        bottom_right_front(bottom_right_front_Node), 
        bottom_right_back(bottom_right_back_Node)
       {};
};
 
二叉搜索树:Code很清楚
http://www.cppblog.com/converse/archive/2006/07/29/10665.html
template
struct BTreeNode
{
    T    Data;
    BTreeNode* pLeft;
    BTreeNode* pRight;
    BTreeNode* pParent;

    BTreeNode(T data = T(), BTreeNode* Parent = NULL, 
                BTreeNode* Left = NULL, BTreeNode* Right = NULL)
                : Data(data), pLeft(Left), pRight(Right), pParent(Parent)
    {
    }
};
 

kd-tree:关注kd-tree的用途和构建算法

http://www.cnblogs.com/slysky/archive/2011/11/08/2241247.html

这篇博客中的例子很清楚的解释了如何构造kd-tree。推荐看:An intoductory tutorial on kd-trees

一些在计算机图形学中经常使用的数据结构_第1张图片

最小生成树:给定一个带权的无向连通图G,如果存在子图G'包含G中所有顶点和一部分边,且不形成回路,则称G'为图G的生成树,使树上所有边上权的总和最小的称为最小生成树。

http://www.cnblogs.com/chinazhangjie/archive/2010/12/02/1894314.html(大家可以看看是如何做“查环”的)

http://www.wutianqi.com/?p=1284

如果大家知道计算几何的话,可以将最小生成树和voronoi图/delaunay三角剖分结合

 

图割:

http://hi.baidu.com/%D2%B9%CB%AE%BE%A7%CD%F5%BD%A8%C7%E0/blog/item/48a637014e584c05738da590.html(简单的介绍)

http://hi.baidu.com/%D2%B9%CB%AE%BE%A7%CD%F5%BD%A8%C7%E0/blog/item/b02a82f3e590b2cd0a46e0e2.html(简单算法的介绍)

http://hi.baidu.com/cs%D6%AE%D0%A1%D0%A1%CA%E9%CD%AF/blog/item/cb5c232e39f213201e30895c.html(简单的代码)

转载于:https://www.cnblogs.com/USTC-fuxm/archive/2011/11/23/2260702.html

你可能感兴趣的:(一些在计算机图形学中经常使用的数据结构)