EasyPR--开发详解(7)字符分割

转自https://www.cnblogs.com/subconscious/p/4660952.html

一.前言

  今天继续我们EasyPR的开发详解。

  这几个月我收到了不少的邮件问:为什么EasyPR开发详解教程中只有车牌定位的部分,而没有字符识别的部分?

  这个原因一是由于整个开发详解是按照车牌识别的流程顺序来的,因此先讲定位,后面再讲字符识别。所以字符识别的部分出来的比较晚。

  二是由于字符识别相对于前面的车牌定位而言,显得较为简单。不像在一个复杂和低分辨场景下进行车牌定位,在字符分割和识别的部分时,所需要处理的场景已经较为固定了,因此其处理技术也较为单一。

  这两个原因是字符分割和识别部分出来较晚的原因。不过在本篇博客中我们会将字符分割部分讲完。

 

二.整体流程

  我们首先看一下,字符分割所需要处理的输入: 即是前面车牌定位中的结果,一个完整的车牌。 

 图4 字符分割模块的输入 

 

  由于在车牌定位中,我们使用了归一化过程。因此所需要处理的车牌的大小是统一的,在目前的版本中(v1.3),这个值是136*36。

  那么字符分割的结果就是将车牌中的所有文字一一分割开来,形成单一的字符块。生成的字符块就可以输入下一步的字符识别部分进行识别。在EasyPR里,字符识别所使用的技术是人工神经网络,也就是ANN。

  具体而言,字符分割过程是如何做的呢?简单说,就是:灰度化->颜色判断->二值化->取轮廓->找外接矩形->截取图块。

EasyPR--开发详解(7)字符分割_第1张图片

图5 字符分割处理流程 

 

  下面,我们使用下图的车牌完整的跑一遍字符分割的流程,以此对其有一个全局的认识。 

 

图6 原始图片

 

  1.灰度化

  首先,我们把彩色的图片转化为灰度化图片。注意:为了以后可以利用彩色信息,在前面的车牌检测过程中,我们的输出结果不是灰度化图片,而是彩色图片。这样以后当我们改正算法,想利用彩色信息时就可以使用了。

  但是在这里,我们的算法还是针对的是灰度化图片,因此首先进行灰度化处理。

  灰度化后的图片见下图:

 

图7 灰度化后结果 

 

  2.颜色判断

  灰度化之后,为了分割字符。我们需要获取字符的轮廓。注意:分割字符有很多种方法。例如投影法,滑动窗口判断法,在这里,EasyPR使用的是取字符轮廓法。

  因为需要取轮廓,就需要把图片转化成一个二值化图片。不过,由于蓝色和黄色车牌图片的区别,两者需要用的二值化参数不一样,因此这里需要对车牌图片的颜色进行一个判断。车牌颜色对二值化的影响的分析见后面“其他细节”章节。

  这里颜色判断的使用的是前面颜色定位详解里的模板匹配法。

EasyPR--开发详解(7)字符分割_第2张图片 

图8 颜色判断

 

  3.二值化

  获取颜色后,就可以选择不同的参数进行大津阈值法来进行二值化。对于本示例图片中的蓝色车牌而言,使用的参数为CV_THRESH_BINARY。

  二值化后的效果见下图:

 

图9 二值化后结果

 

   4.取轮廓

  接下来,使用被多次用到的取轮廓方法findContours。关于这个方法的具体内容,在前面的开发详解中已做过介绍,这里不再赘述。

  取轮廓后的结果如下图:

 

图10 取轮廓操作

 

   注意:直接使用findContours方法取轮廓时,在处理中文字符,也就是“苏”时,会发生断裂现象。因此为了处理中文字符,EasyPR换了一种思路,使用了额外的步骤来解决这个问题。具体可以见后面的“中文字符处理”章节。

 

  5.找外接矩形

  使用了中文字符处理方法以后,成功获取了所有的字符的外接矩形。

  具体见下图:

 

图11 所有字符的外接矩形

 

   6.截取图块

  最后,把图中的外接矩形一一截取出来,归一化到统一格式。留待输入下个步骤--字符识别模块处理。

  归一化后字符图块见下图:

            

图12 截取并归一化的图块

 

三.中文字符处理

  上面的流程在处理英文车牌时,效果是很好的。但是在处理中文车牌时,存在一个很大的问题。

  在取轮廓时,中文由于自身的特性,例如有笔画区间,取轮廓会造成断裂现象。例如下图中的“苏”。英文字符通过取轮廓都被完整的包括了,而“苏”字则分成了两个连通区域。

图13 取轮廓操作示例

 

  虽然并不是所有的中文都会存在这个问题(例如下图的“津”字),但直接用取轮廓操作已经不合适了。

  EasyPR是如何解决这个问题的呢?其实想法很简单。那就是既然有些中文字符没办法用取轮廓处理,那么就干脆先不处理中文字符,而是用取轮廓操作处理中文字符后面的字符。例如“苏A88M88”,其中“A88M88”这六个字符我都能用取轮廓操作获得。我先获取这六个字符,再想办法获取中文字符。

图14 “津”字

 

  获取这六个字符后,接下来该如何获取“苏”这个中文字符的轮廓呢?

  这里的关键就是“苏”字符后面的“A”字符,这个字符在中文车牌里代表城市的代码,我们在这里简称它为“城市字符”或者“特殊字符”。

  这个字符有一个特征,就是与后面的字符存在一定的间隔。但是与前面的中文字符靠的较紧。倘若我获取了这个特殊字符的外接矩形,只要把这个外接矩形向左做一些的偏移(偏移的大小可以通过经验指定,例如设置为字符宽度的1.15倍),这样这个外接矩形就成了包含中文字符的一个矩形了。下面就可以截取中文字符的图块。

  下图就是“特殊字符”与被反推得到的“中文字符”的矩形,在图中用红色矩形表示。

图15 反推得到的中文字符位置

 

  下面的问题就是如何获取“特殊字符”的位置?

  一种方法是把所有取轮廓操作获取到的矩形进行排序,最左边的就是特殊字符的图块。但是有些中文字符会被取轮廓操作截取为一个连通区域。在这种情况下,最左边的图块矩形是中文字符的矩形,而不是特殊字符的矩形了。所以这个方法不能用。

  另一种方法就是依次判断所有取轮廓操作得到的矩形的位置,设矩形的中点恰好在整个车牌的1/7到2/7之间时的矩形为特殊矩形。这样操作的前提是我们的车牌定位的非常准确,恰到把整个车牌截取的正正好。在这种情况下,只要外接矩形满足这些条件,就可以判断为特殊字符的矩形。

  这个方法思路很简单,实际中应用效果也不错,因此也是EasyPR目前采用的方法。

EasyPR--开发详解(7)字符分割_第3张图片

图16 获取特殊字符的位置

 

  以下是特殊字符判断的代码:

  View Code

//! 找出指示城市的字符的Rect,例如苏A7003X,就是"A"的位置
int CCharsSegment::GetSpecificRect(const vector& vecRect) {
vector xpositions;
int maxHeight = 0;
int maxWidth = 0;

for (size_t i = 0; i < vecRect.size(); i++) {
xpositions.push_back(vecRect[i].x);

if (vecRect[i].height > maxHeight) {
maxHeight = vecRect[i].height;
}
if (vecRect[i].width > maxWidth) {
maxWidth = vecRect[i].width;
}
}

int specIndex = 0;
for (size_t i = 0; i < vecRect.size(); i++) {
Rect mr = vecRect[i];
int midx = mr.x + mr.width / 2;

//如果一个字符有一定的大小,并且在整个车牌的1/7到2/7之间,则是我们要找的特殊字符
//当前字符和下个字符的距离在一定的范围内
if ((mr.width > maxWidth * 0.8 || mr.height > maxHeight * 0.8) &&
(midx < int(m_theMatWidth / 7) * 2 &&
midx > int(m_theMatWidth / 7) * 1)) {
specIndex = i;
}
}

return specIndex;
}

 

  以上就是EasyPR能处理中文车牌的主要原因。原先的taotao1233的代码中无法处理中文的原因就是没有这样一步预处理。其实这是一个很简单的思想,但在之前并没有被实现。EasyPR里实现了这个思路,同时发现,这个方法效果出奇的好。基本可以应对所有的情况。所以说,这个方法可以说是一个简单,有效的处理中文车牌的方法。

 

四.其他一些细节

  1.颜色判断

  在进行二值化前,需要进行一次颜色判断,这是因为对于蓝色和黄色车牌而言,使用的二值化策略必须不同。

   

图17 蓝色与黄色车牌的不同

 

  对于蓝色车牌而言,使用的参数为CV_THRESH_BINARY。

  而对于黄色车牌而言,使用的参数为CV_THRESH_BINARY_INV。

  假设黄色车牌使用了CV_THRESH_BINARY作为参数,则会发生如下图一样的二值化结果,其中字符部分变成了黑色,而背景则是白色(同理,蓝色车牌使用CV_THRESH_BINARY_INV也是一样的效果)。

  在这种不正确的参数带来的二值化情况下,取轮廓操作将无法按照预期的行为进行处理。因此,必须使用正确的二值化参数。

     

图18 不正确参数的二值化效果

 

  在颜色判断时,有一个小技巧,就是先把四周的“边”截取后再进行颜色的判断,这样可以消除车牌定位时一些多余的四周的干扰。

  代码如下:

1   Mat tmpMat = input(Rect_(w * 0.1, h * 0.1, w * 0.8, h * 0.8));
2 
3   // 判断车牌颜色以此确认threshold方法
4   Color plateType = getPlateType(tmpMat, true);

  

  颜色判断方法的代码如下:

  View Code

// getPlateType
//判断车牌的类型
Color getPlateType(const Mat& src, const bool adaptive_minsv) {
float max_percent = 0;
Color max_color = UNKNOWN;

float blue_percent = 0;
float yellow_percent = 0;
float white_percent = 0;

if (plateColorJudge(src, BLUE, adaptive_minsv, blue_percent) == true) {
// cout << "BLUE" << endl;
return BLUE;
} else if (plateColorJudge(src, YELLOW, adaptive_minsv, yellow_percent) ==
true) {
// cout << "YELLOW" << endl;
return YELLOW;
} else if (plateColorJudge(src, WHITE, adaptive_minsv, white_percent) ==
true) {
// cout << "WHITE" << endl;
return WHITE;
} else {
// cout << "OTHER" << endl;

// 如果任意一者都不大于阈值,则取值最大者
max_percent = blue_percent > yellow_percent ? blue_percent : yellow_percent;
max_color = blue_percent > yellow_percent ? BLUE : YELLOW;

max_color = max_percent > white_percent ? max_color : WHITE;
return max_color;
}
}

 

  2.排除缝隙

  在获得中文字符图块以后,下面一步就是把剩下的图块获取了。不过由于中文车牌一般只有7个字符,所以可以把后面的图块从左到右排序,依次选择6个即可。一些会被误判为“I”的缝隙可以通过这种方法排除出去。

  例如下图中,最右边的一个缝隙会被误识别为"1"。但是倘若从左到右依次选择的话,这个缝隙并不会被选入候选集合中,因为它已经是“第八个”字符了。

图19 最右边会被误判为"1"的缝隙

 

  排序与依次选择的代码如下:

  View Code

//! 这个函数做两个事情
// 1.把特殊字符Rect左边的全部Rect去掉,后面再重建中文字符的位置。
// 2.从特殊字符Rect开始,依次选择6个Rect,多余的舍去。
int CCharsSegment::RebuildRect(const vector& vecRect,
vector& outRect, int specIndex) {
int count = 6;
for (size_t i = specIndex; i < vecRect.size() && count; ++i, --count) {
outRect.push_back(vecRect[i]);
}

return 0;
}

 

  3.去除柳钉

  有些中国的车牌中有一个非常妨碍识别的东西,那就是柳钉。倘若对一副含有柳钉的图进行二值化,极有可能会出现下图的结果。一些字符图块(下图的"9"和"1")通过柳钉的原因联系到了一体,那样的话就无法通过取轮廓操作来分割了。

图20 柳钉的影响

 

  因此在二值化之后,还需要一个去除柳钉的操作。

  去除柳钉的思想也并不复杂,就是依次扫描每行,判断跳变次数。车牌字符所在的行的跳变次数是很多的,而柳钉所在的行就会偏少。因此当发现某行跳变次数较少,则可以把该行的所有像素值赋值为0,这样就会大幅度消除柳钉的影响了。

  下图就是去除柳钉后的效果。

图21 去除柳钉后的效果

 

  去除柳钉函数的代码如下:

  View Code

//去除车牌上方的钮钉
//计算每行元素的阶跃数,如果小于X认为是柳丁,将此行全部填0(涂黑)
// X的推荐值为,可根据实际调整
bool clearLiuDing(Mat& img) {
vector fJump;
int whiteCount = 0;
const int x = 7;
Mat jump = Mat::zeros(1, img.rows, CV_32F);
for (int i = 0; i < img.rows; i++) {
int jumpCount = 0;

for (int j = 0; j < img.cols - 1; j++) {
if (img.at(i, j) != img.at(i, j + 1)) jumpCount++;

if (img.at(i, j) == 255) {
whiteCount++;
}
}

jump.at(i) = (float)jumpCount;
}

int iCount = 0;
for (int i = 0; i < img.rows; i++) {
fJump.push_back(jump.at(i));
if (jump.at(i) >= 16 && jump.at(i) <= 45) {
//车牌字符满足一定跳变条件
iCount++;
}
}

////这样的不是车牌
if (iCount * 1.0 / img.rows <= 0.40) {
//满足条件的跳变的行数也要在一定的阈值内
return false;
}
//不满足车牌的条件
if (whiteCount * 1.0 / (img.rows * img.cols) < 0.15 ||
whiteCount * 1.0 / (img.rows * img.cols) > 0.50) {
return false;
}

for (int i = 0; i < img.rows; i++) {
if (jump.at(i) <= x) {
for (int j = 0; j < img.cols; j++) {
img.at(i, j) = 0;
}
}
}
return true;
}

 

五.总结 

  最后回顾一下整体的处理流程,首先是对车牌图像进行灰度化,然后根据车牌的不同颜色来进行不同的二值化处理。二值化完后首先去除柳钉,然后进行取轮廓操作。

  取轮廓操作以后,在所有的轮廓中根据先验知识,找到代表城市的字符,也就是“苏A”中“A”的位置,根据“A”的位置来反推“苏”的位置。

  最后将找到的这些轮廓依次排序,从左到右依次选择6个,和第一个的中文字符组成7个字符的图块数组,输入到下一步字符识别模块中进行处理。

  整个字符分割流程就到此结束了,还是比较简单的。其中的中文字符位置的确定使用了“先验知识”这种方法。这种方法在面对固定已知场景中是较好的方法,但是面对特殊情况时就可能会有不太好的效果,因此要根据具体情况来权衡。

 

转载于:https://www.cnblogs.com/cxiang/p/9857233.html

你可能感兴趣的:(EasyPR--开发详解(7)字符分割)