Spark Streaming之五:Window窗体相关操作

SparkStreaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD。

网官图中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算。所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动间隔,而且这两个参数值都必须是batch间隔的整数倍。

Spark Streaming对滑动窗口的支持,是比Storm更加完善和强大的。

 

之前有些朋友问:

spark官网图片中: 滑动窗口宽度是3个时间单位,滑动时间是2两个单位,这样的话中间time3的Dstream不是重复计算了吗? 

Answer:比如下面这个例子是针对热搜的应用场景,官方的例子也可能是是针对不同的场景给出了的。如果你不想出现重叠的部分,把滑动间隔由2改成3即可

 

SparkStreaming对滑动窗口支持的转换操作:

 示例讲解:

1、window(windowLength, slideInterval)
  该操作由一个DStream对象调用,传入一个窗口长度参数,一个窗口移动速率参数,然后将当前时刻当前长度窗口中的元素取出形成一个新的DStream。

  下面的代码以长度为3,移动速率为1截取源DStream中的元素形成新的DStream。
val windowWords = words.window(Seconds( 3 ), Seconds( 1))

Spark Streaming之五:Window窗体相关操作_第1张图片

基本上每秒输入一个字母,然后取出当前时刻3秒这个长度中的所有元素,打印出来。从上面的截图中可以看到,下一秒时已经看不到a了,再下一秒,已经看不到b和c了。表示a, b, c已经不在当前的窗口中。

2、 countByWindow(windowLength,slideInterval)
  返回指定长度窗口中的元素个数。

  代码如下,统计当前3秒长度的时间窗口的DStream中元素的个数:
val windowWords = words.countByWindow(Seconds( 3 ), Seconds( 1))

Spark Streaming之五:Window窗体相关操作_第2张图片

3、 reduceByWindow(func, windowLength,slideInterval)
  类似于上面的reduce操作,只不过这里不再是对整个调用DStream进行reduce操作,而是在调用DStream上首先取窗口函数的元素形成新的DStream,然后在窗口元素形成的DStream上进行reduce。

val windowWords = words.reduceByWindow(_ + "-" + _, Seconds( 3) , Seconds( 1 ))

Spark Streaming之五:Window窗体相关操作_第3张图片

4、 reduceByKeyAndWindow(func,windowLength, slideInterval, [numTasks])
  调用该操作的DStream中的元素格式为(k, v),整个操作类似于前面的reduceByKey,只不过对应的数据源不同,reduceByKeyAndWindow的数据源是基于该DStream的窗口长度中的所有数据。该操作也有一个可选的并发数参数。

  下面代码中,将当前长度为3的时间窗口中的所有数据元素根据key进行合并,统计当前3秒中内不同单词出现的次数。
val windowWords = pairs.reduceByKeyAndWindow((a:Int , b:Int) => (a + b) , Seconds(3 ) , Seconds( 1 ))

Spark Streaming之五:Window窗体相关操作_第4张图片

5、 reduceByKeyAndWindow(func, invFunc,windowLength, slideInterval, [numTasks])
  这个窗口操作和上一个的区别是多传入一个函数invFunc。前面的func作用和上一个reduceByKeyAndWindow相同,后面的invFunc是用于处理流出rdd的。

  在下面这个例子中,如果把3秒的时间窗口当成一个池塘,池塘每一秒都会有鱼游进或者游出,那么第一个函数表示每由进来一条鱼,就在该类鱼的数量上累加。而第二个函数是,每由出去一条鱼,就将该鱼的总数减去一。
val windowWords = pairs.reduceByKeyAndWindow((a: Int, b:Int ) => (a + b) , (a:Int, b: Int) => (a - b) , Seconds( 3 ), Seconds( 1 ))

下面是演示结果,最终的结果是该3秒长度的窗口中历史上出现过的所有不同单词个数都为0。Spark Streaming之五:Window窗体相关操作_第5张图片

一段时间不输入任何信息,看一下最终结果
Spark Streaming之五:Window窗体相关操作_第6张图片
 
6、 countByValueAndWindow(windowLength,slideInterval, [numTasks])
  类似于前面的countByValue操作,调用该操作的DStream数据格式为(K, v),返回的DStream格式为(K, Long)。统计当前时间窗口中元素值相同的元素的个数。
val windowWords = words.countByValueAndWindow(Seconds( 3 ), Seconds( 1))

Spark Streaming之五:Window窗体相关操作_第7张图片

 
 

示例二:热点搜索词滑动统计,每隔10秒钟,统计最近60秒钟的搜索词的搜索频次,并打印出排名最靠前的3个搜索词以及出现次数

Scala版本:

package com.spark.streaming  
  
import org.apache.spark.streaming.Seconds  
import org.apache.spark.streaming.StreamingContext  
import org.apache.spark.SparkConf  
  
/** 
 * @author Ganymede 
 */  
object WindowHotWordS {  
  def main(args: Array[String]): Unit = {  
    val conf = new SparkConf().setAppName("WindowHotWordS").setMaster("local[2]")  
  
    //Scala中,创建的是StreamingContext  
    val ssc = new StreamingContext(conf, Seconds(5))  
  
    val searchLogsDStream = ssc.socketTextStream("spark1", 9999)  
  
    val searchWordsDStream = searchLogsDStream.map { searchLog => searchLog.split(" ")(1) }  
  
    val searchWordPairDStream = searchWordsDStream.map { searchWord => (searchWord, 1) }  
  
    // reduceByKeyAndWindow  
    // 第二个参数,是窗口长度,这是是60秒  
    // 第三个参数,是滑动间隔,这里是10秒  
    // 也就是说,每隔10秒钟,将最近60秒的数据,作为一个窗口,进行内部的RDD的聚合,然后统一对一个RDD进行后续计算  
    // 而是只是放在那里  
    // 然后,等待我们的滑动间隔到了以后,10秒到了,会将之前60秒的RDD,因为一个batch间隔是5秒,所以之前60秒,就有12个RDD,给聚合起来,然后统一执行reduceByKey操作  
    // 所以这里的reduceByKeyAndWindow,是针对每个窗口执行计算的,而不是针对 某个DStream中的RDD  
    // 每隔10秒钟,出来 之前60秒的收集到的单词的统计次数  
    val searchWordCountsDStream = searchWordPairDStream.reduceByKeyAndWindow((v1: Int, v2: Int) => v1 + v2, Seconds(60), Seconds(10))  
  
      
    val finalDStream = searchWordCountsDStream.transform(searchWordCountsRDD => {  
      val countSearchWordsRDD = searchWordCountsRDD.map(tuple => (tuple._2, tuple._1))  
      val sortedCountSearchWordsRDD = countSearchWordsRDD.sortByKey(false)  
      val sortedSearchWordCountsRDD = sortedCountSearchWordsRDD.map(tuple => (tuple._1, tuple._2))  
      val top3SearchWordCounts = sortedSearchWordCountsRDD.take(3)  
  
      for (tuple <- top3SearchWordCounts) {  
        println("result : " + tuple)  
      }  
  
      searchWordCountsRDD  
    })  
  
    finalDStream.print()  
  
    ssc.start()  
    ssc.awaitTermination()  
  }  
} 

 

你可能感兴趣的:(Spark Streaming之五:Window窗体相关操作)