Python爬虫的两套解析方法和四种爬虫实现

    对于大多数朋友而言,爬虫绝对是学习python的最好的起手和入门方式。因为爬虫思维模式固定,编程模式也相对简单,一般在细节处理上积累一些经验都可以成功入门。本文想针对某一网页对python基础爬虫的两大解析库(BeautifulSouplxml)和几种信息提取实现方法进行分析,以开python爬虫之初见。

基础爬虫的固定模式

    笔者这里所谈的基础爬虫,指的是不需要处理像异步加载、验证码、代理等高阶爬虫技术的爬虫方法。一般而言,基础爬虫的两大请求库urllibrequestsrequests通常为大多数人所钟爱,当然urllib也功能齐全。两大解析库BeautifulSoup因其强大的HTML文档解析功能而备受青睐,另一款解析库lxml在搭配xpath表达式的基础上也效率提高。就基础爬虫来说,两大请求库和两大解析库的组合方式可以依个人偏好来选择。

  • requests+BeautifulSoup

  • requests+lxml

同一网页爬虫的四种实现方式

    笔者以腾讯新闻首页的新闻信息抓取为例。

Python爬虫的两套解析方法和四种爬虫实现_第1张图片

    比如说我们想抓取每个新闻的标题和链接,并将其组合为一个字典的结构打印出来。首先查看HTML源码确定新闻标题信息组织形式。

Python爬虫的两套解析方法和四种爬虫实现_第2张图片

    可以目标信息存在于em标签下a标签内的文本和href属性中。可直接利用requests库构造请求,并用BeautifulSoup或者lxml进行解析。

  • 方式一:requests+BeautifulSoup+select css选择器

# select method
import requests
from bs4 import BeautifulSoup
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
url = 'http://news.qq.com/'

Soup = BeautifulSoup(requests.get(url=url, headers=headers).text.encode("utf-8"), 'lxml')
em = Soup.select('em[class="f14 l24"] a')
for i in em:
    title = i.get_text()
    link = i['href']
    print({'标题': title, 
           '链接': link
    })

    很常规的处理方式,抓取效果如下:

Python爬虫的两套解析方法和四种爬虫实现_第3张图片

  • 方式二:requests+BeautifulSoup+find_all进行信息提取

# find_all method
import requests
from bs4 import BeautifulSoup
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
url = 'http://news.qq.com/'

Soup = BeautifulSoup(requests.get(url=url, headers=headers).text.encode("utf-8"), 'lxml')
em = Soup.find_all('em', attrs={'class': 'f14 l24'})for i in em:
    title = i.a.get_text()
    link = i.a['href']
    print({'标题': title,
           '链接': link
    })

    同样是requests+BeautifulSoup的爬虫组合,但在信息提取上采用了find_all的方式。效果如下:

Python爬虫的两套解析方法和四种爬虫实现_第4张图片

  • 方式三:requests+lxml/etree+xpath表达式

# lxml/etree method
import requests
from lxml import etree

headers = {    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
url = 'http://news.qq.com/'

html = requests.get(url = url, headers = headers)
con = etree.HTML(html.text)

title = con.xpath('//em[@class="f14 l24"]/a/text()')
link = con.xpath('//em[@class="f14 l24"]/a/@href')
for i in zip(title, link):
    print({'标题': i[0],
           '链接': i[1]
    })

    使用lxml库下的etree模块进行解析,然后使用xpath表达式进行信息提取,效率要略高于BeautifulSoup+select方法。这里对两个列表的组合采用了zip方法。效果如下:

Python爬虫的两套解析方法和四种爬虫实现_第5张图片

  • 方式四:requests+lxml/html/fromstring+xpath表达式

# lxml/html/fromstring method
import requests
import lxml.html as HTML

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
url = 'http://news.qq.com/'

con = HTML.fromstring(requests.get(url = url, headers = headers).text)
title = con.xpath('//em[@class="f14 l24"]/a/text()')
link = con.xpath('//em[@class="f14 l24"]/a/@href')
for i in zip(title, link):
    print({'标题': i[0],'链接': i[1]
    })

    跟方法三类似,只是在解析上使用了lxml库下的html.fromstring模块。抓取效果如下:

Python爬虫的两套解析方法和四种爬虫实现_第6张图片

    很多人觉得爬虫有点难以掌握,因为知识点太多,需要懂前端、需要python熟练、还需要懂数据库,更不用说正则表达式、XPath表达式这些。其实对于一个简单网页的数据抓取,不妨多尝试几种抓取方案,举一反三,也更能对python爬虫有较深的理解。长此以往,对于各类网页结构都有所涉猎,自然经验丰富,水到渠成。

往期精彩:


一个数据科学从业者的学习历程

640?
640?wx_fmt=jpeg
长按二维码.关注数据科学家养成记

640?wx_fmt=jpeg

你可能感兴趣的:(Python爬虫的两套解析方法和四种爬虫实现)