- 线性稳压电路:从理论到实践的全维度深度解析 陆冠旭
澪622
数学建模
摘要本文提出创新的"电源完整性四维分析法",系统性地解构线性稳压器设计。通过建立量子-经典混合稳压模型,开发动态压差补偿算法和PSRR频率折叠技术,解决了纳米级工艺下的稳压挑战。包含12个设计黄金法则、23个跨领域应用案例和完整的验证方法论,为工程师提供从基础到前沿的全套解决方案。**关键词**:四维电源分析、量子稳压、自愈合LDO、动态热管理、光子-电子协同##1.量子化稳压理论###1.1载流
- 深度学习交互式图像分割技术演进与突破
wang1776866571
深度学习交互式分割深度学习人工智能交互式分割
说明本文为作者读研期间基于交互式图像分割领域公开文献的系统梳理与个人理解总结,所有内容均为原创撰写(ai辅助创作),未直接复制或抄袭他人成果。文中涉及的算法、模型及实验结论均参考自领域内公开发表的学术论文(具体文献见文末参考文献列表)。本文旨在为交互式图像分割领域的学习者提供一份结构化的综述参考,内容涵盖技术演进、核心方法、关键技术优化及应用前景,希望能为相关研究提供启发。摘要:本文系统综述了基于
- 量子化学仿真软件:NWChem_(12).并行计算技术
kkchenjj
化工仿真2化工仿真模拟化工仿真
并行计算技术并行计算技术在量子化学仿真软件中扮演着至关重要的角色。随着计算化学任务的复杂度和数据规模的不断增长,传统的单核计算已经无法满足高性能计算的需求。并行计算通过利用多个处理器或计算节点来分担计算任务,可以在显著减少计算时间的同时提高计算效率。在NWChem中,支持多种并行计算模式,包括共享内存并行(OpenMP)、分布式内存并行(MPI)以及混合并行(OpenMP+MPI)。本节将详细介绍
- 量子化学仿真软件:ORCA_(7).密度泛函理论DFT计算
kkchenjj
化工仿真2化工仿真模拟算法人工智能机器学习化工仿真
密度泛函理论DFT计算密度泛函理论(DensityFunctionalTheory,DFT)是量子化学中一种重要的方法,用于研究多电子系统的电子结构。DFT通过将电子密度作为基本变量,而不是波函数,大大简化了多电子系统的计算复杂度。在ORCA中,DFT计算是常用的计算方法之一,可以用于优化分子结构、计算电子密度、能级、振动频率等。1.基本概念1.1电子密度电子密度定义为单位体积内的电子数。在DFT
- 量子机器学习入门:从理论到实践
量子机器学习入门:从理论基石到实践路径元数据框架标题量子机器学习入门:从理论基石到实践路径——连接量子计算与人工智能的未来桥梁关键词量子计算;机器学习;量子算法;量子神经网络;Qiskit;PennyLane;量子变分算法摘要量子机器学习(QuantumMachineLearning,QML)是量子计算与机器学习的交叉领域,通过量子计算的叠加态、纠缠和并行性解决传统机器学习的计算瓶颈(如高维数据处
- 量子计算突破:8比特扩散模型实现指数级加速
晨曦543210
人工智能
目录一、量子扩散模型(QuantumDiffusion)二、DNA存储生成(Biological-GAN)三、光子计算加速四、神经形态生成五、引力场渲染六、分子级生成七、星际生成网络八、元生成系统极限挑战方向一、量子扩散模型(QuantumDiffusion)量子线路模拟经典扩散过程fromqiskitimportQuantumCircuitfromqiskit_machine_learning.
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- ER综述论文阅读-Emotion recognition in EEG signals using deep learning methods: A review
今天早睡了
情绪识别EmotionRecognition论文阅读深度学习人工智能
EmotionrecognitioninEEGsignalsusingdeeplearningmethods:AreviewQ1期刊,2023论文链接:https://d1wqtxts1xzle7.cloudfront.net/105887899/emotionreview-libre.pdf?1695460941=&response-content-disposition=inline%3B+f
- 微算法科技(NASDAQ MLGO)研究非标准量子预言机,拓展量子计算边界
MicroTech2025
量子计算
在当今科技飞速发展的时代,量子计算作为极具潜力的前沿领域,正不断探索着突破传统计算局限的新路径。然而,标准量子预言机在面对一些复杂且特殊的计算需求时,逐渐显现出其局限性,难以满足日益多样化的科研及应用场景。微算法科技(NASDAQMLGO)开始深入研究非标准量子预言机,试图通过拓展预言机的功能,进一步推动量子计算的发展。非标准量子预言机的研究不仅有助于深入理解量子计算的内在机制,还为解决复杂问题提
- 微算法科技从量子比特到多级系统,Qudits技术革新引领量子计算新时代
MicroTech2025
量子计算
在量子计算领域,量子比特(qubit)一直是研究和应用的核心。然而,随着量子计算的不断发展和对更大规模、更高效率计算的需求增加,研究者开始探索基于多级量子系统(即qudits)的方法。Qudits,相较于传统的二级量子比特,能够在更广泛的量子态空间内编码信息,具有更高的计算能力和更高的处理效率,成为当前量子计算技术研究的一个热门方向。微算法科技(NASDAQ:MLGO)这一领域取得了突破性进展,开
- 量子机器学习:当量子计算遇上人工智能,颠覆即将来临?
在当今科技飞速发展的时代,量子计算与人工智能宛如两颗璀璨的星辰,各自在不同的苍穹闪耀,正以前所未有的速度重塑着世界的面貌。当这两大前沿领域相互碰撞、深度融合,量子机器学习应运而生,犹如一场科技风暴在学界与产业界悄然酝酿。这不仅让人满心期待,更引发了对未来科技格局的深刻思考:量子机器学习所承诺的颠覆,真的即将来临吗?####一、量子计算的魅力:从量子比特到量子门操作量子计算的魅力源于其对量子比特(q
- 大型语言模型中的提示工程系统综述:技术与应用
AI专题精讲
Paper阅读语言模型人工智能自然语言处理
摘要提示工程已成为扩展大型语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。这种方法利用任务特定的指令(称为prompt),在不修改核心模型参数的情况下增强模型效能。与更新模型参数不同,prompt仅通过给定指令即可引出所需的模型行为,从而实现预训练模型在下游任务中的无缝集成。prompt可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已
- 量子计算的数学地基:解码希尔伯特空间的魔法
牧之112
量子计算
在科技圈,“量子计算”早已不是陌生的名词。从谷歌的“量子霸权”实验到IBM的量子云服务,从药物研发的分子模拟到密码学的革命性突破,量子计算正以颠覆式的姿态重塑着人类对计算的认知。但在这些令人惊叹的应用背后,藏着一个关键的数学基石——希尔伯特空间(HilbertSpace)。它像一片隐形的“量子舞台”,支撑着量子比特的叠加、纠缠与计算,是理解量子计算本质绕不开的概念。一、从“普通空间”到“量子空间”
- 量子传感探针:金刚石NV色心实现细胞级磁弹性成像(分辨率10nm)技术解析
百态老人
人工智能
一、技术原理与核心突破金刚石氮-空位色心(NV色心)作为原子级量子传感器,其磁弹性成像能力源于电子自旋态与环境磁场的量子相干相互作用,结合纳米探针技术实现细胞级分辨率。核心技术原理包括:1.NV色心量子传感机制磁弹性耦合模型:NV色心的自旋哈密顿量可表示为:H=DSz2+γeB⋅S+λϵ⋅SH=DS_z^2+\gamma_e\mathbf{B}\cdot\mathbf{S}+\lambda\mat
- 信仰集结!2025 ROG DAY狂欢来袭,超能DIY好物爆燃登场
4月12日,当星城长沙的霓虹与金字塔的信仰之光交相辉映,在长沙市远大城金字塔,所有玩家终端同时收到神秘指令——「ROGDAY」正式启动!这不是普通的科技展会,而是一场由ROGLAB灵感实验室进行的硬核玩家朝圣之旅。与此同时,诸多超能ROGDIY好物也高能亮相,与玩家一起迎接这场电竞狂欢!电竞达人狂欢——特效全开竞技场首先,在此次ROGDAY活动现场的量子计算中心展区内,不仅有激情四射的3A大作,重
- 《论三生原理》如何与量子计算对话?
葫三生
三生学派量子计算
AI辅助创作:《论三生原理》与量子计算的对话体现为哲学思想、数学工具与物理机制的三重耦合,其核心关联如下:一、哲学基础的重构性映射动态生成论与量子叠加的对应将《道德经》“三生万物”的生成逻辑映射为量子态演化模型:“道生一”对应量子真空涨落(虚粒子对涌现),“二生三”类比纠缠光子对的自旋关联态,“三生万物”诠释量子比特叠加态的指数级演化空间。量子纠缠中“整体性优先个体”的特性与三生原理“关系先
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 什么是公链?
VV- Wxiaoxwen
软件工程开源软件软件构建
公链,即公共区块链,是一种完全去中心化的区块链网络,对所有人开放,任何人都可以自由参与其中的交易、验证和维护。公链的核心特点:-开放性:无需授权,任何人都能接入网络,读取数据、发送交易并参与共识过程。-去中心化:没有中央机构或单一实体控制,由多个节点共同维护,节点分布越广泛,去中心化程度越高。-透明性:链上的所有交易记录都是公开可查的,任何人都能通过区块链浏览器查看详细信息。-安全性:依赖密码学技
- 量子化学仿真软件:NWChem_(7).分子动力学模拟
kkchenjj
化工仿真2化工仿真模拟人工智能化工仿真
分子动力学模拟分子动力学(MolecularDynamics,MD)模拟是量子化学和材料科学中常用的一种计算方法,用于研究分子系统在不同时间和空间尺度下的行为。通过MD模拟,可以观察分子的运动轨迹、能量变化、温度和压力等物理性质,从而深入了解分子间的相互作用和系统的动力学性质。在NWChem中,MD模拟可以通过多种方法实现,包括经典MD和量子MD。本节将详细介绍如何在NWChem中进行分子动力学模
- AGI面临突破需要清除这两朵乌云:解码智能鸿沟的终极密码
1.物理学史的镜鉴:科学革命的预兆1900年英国物理学家开尔文勋爵宣称"物理学大厦已告完成",却未料及那两朵"光速悖论"与"紫外灾难"的乌云,最终催生了相对论与量子力学。这段历史在AI领域重现:当算力呈指数级增长,模型参数突破万亿级,我们依然无法教会AI"水杯会掉落"的常识。这种历史重演揭示着深刻规律——任何科学体系的突破往往始于对既有范式的质疑。正如爱因斯坦推翻绝对时空观,当前AI研究需要重新审
- 成像系统中的噪声:光子散粒噪声
YoungHong1992
计算机视觉图像信号处理
关键要点研究表明,传感器成像系统中的噪声主要来源于光子散粒噪声,这是光量子特性的结果。噪声形式为随机波动,遵循泊松分布,在图像中表现为颗粒感,尤其在低光条件下明显。证据显示,不同光照环境下的噪声表现不同,亮光条件下信号噪声比更高,相对噪声较小。噪声的产生在仅考虑光学成像、不考虑电流因素的情况下,传感器成像系统中的主要噪声来源是光子散粒噪声。这是由光的量子性质引起的,即光子到达传感器时数量的统计随机
- Python爬虫实战:爬取百度学术摘要信息全流程详解与代码示例
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy学习dubbo百度
1.前言随着学术资源数字化的普及,百度学术成为学者们常用的论文搜索平台。获取大量论文摘要信息对于文献综述、知识图谱构建等研究极为重要。本文将系统讲解如何利用Python编写爬虫,批量抓取百度学术上的论文摘要。我们将结合最新Python爬虫技术,涵盖基础同步爬虫、异步爬虫、多线程,全面实战演示。2.项目背景与目标百度学术支持通过关键词搜索论文,展示论文标题、作者、期刊、摘要等信息。目标是:根据关键词
- 微算法科技(NASDAQ: MLGO)探索Grover量子搜索算法,利用量子叠加和干涉原理,实现在无序数据库中快速定位目标信息的效果。
MicroTech2025
算法科技数据库
在信息爆炸的时代,数据的海量化带来了前所未有的挑战,如何从庞大的数据库中迅速找到所需信息,成为信息技术领域亟待解决的问题。传统的搜索算法在面对大规模数据时,效率逐渐下降,难以满足现代社会的需求。量子计算的出现为解决这一问题带来了新的思路和方法,Grover量子搜索算法作为量子计算领域的重要算法之一,在快速搜索目标信息方面具有巨大潜力。Grover量子搜索算法是一种基于量子力学原理的搜索算法,它利用
- 某跨国银行SWIFT报文协议升级中5%影子流量策略深度解析
一、技术实施背景与核心需求该银行在全球200+国家运营,日均处理120万笔SWIFT报文,涉及**$900亿**跨境资金流动。协议升级面临三重挑战:零容忍中断:报文处理延迟需保持≤50ms,错误率≤0.001%量子安全合规:满足NISTPQL5和FIPS203-2024标准异构系统兼容:需适配36种遗留支付系统(含COBOL架构)二、5%影子流量技术路径1.无损流量镜像架构
- 双线性配对
牧天白衣.
论文点
双线性配对(BilinearPairing)是密码学中的一种重要数学工具,尤其在椭圆曲线密码学中应用广泛。以下从定义、性质、原理和应用等方面详细解释:1.基本定义双线性配对是一种映射关系,将两个群(通常是椭圆曲线上的加法群G1G_1G1和G2G_2G2)中的元素映射到第三个群(乘法群GTG_TGT)中,满足以下性质:•双线性性:对任意P,Q∈G1P,Q\inG_1P,Q∈G1和标量a,b∈Za,b
- 多智能体深度强化学习:一项综述 Multi-agent deep reinforcement learning: a survey
资源存储库
笔记
Abstract抽象Theadvancesinreinforcementlearninghaverecordedsublimesuccessinvariousdomains.Althoughthemulti-agentdomainhasbeenovershadowedbyitssingle-agentcounterpartduringthisprogress,multi-agentreinforc
- 【文献精读笔记】Explainability for Large Language Models: A Survey (大语言模型的可解释性综述)(五)
百万年薪天才少女
人工智能人工智能机器学习深度学习
****非斜体正文为原文献内容(也包含笔者的补充),灰色块中是对文章细节的进一步详细解释!五、解释评估(ExplanationEvaluation)在前面的章节中,我们介绍了不同的解释技术和它们的用途,但评估它们如何忠实地反映模型的推理过程仍然是一个挑战。我们将评估大致分为两类:传统微调范式的局部解释评估(第5.1节)和提示范式中自然语言CoT解释的评估(第5.2节)。评估的两个关键维度是对人类的
- 智能数字式毫秒计在实际生活场景中的应用
西安同步高经理
人工智能算法大数据
在电力领域,SYN5307型数字毫秒表可精准监测特高压变电站断路器合闸时间差,定位继电保护装置信号延迟;工业自动化中,优化汽车焊装线时序、提升半导体晶圆切割良率;科研计量上,助力量子通信同步校准,纳入多地计量院溯源体系;消防安全方面,保障消防联动效率与电梯应急合规;极端场景下稳定运行。一、电力系统:从继电保护到电网稳定性的精准守护1.断路器同期性测试的"黄金标准"在±800kV特高压变电站建设中,
- 鸟类识别与分类相关数据集
Bryan Ding
分类数据挖掘人工智能
随着深度学习技术的快速发展,其在图像识别、语音识别等领域取得了显著的成果。鸟类识别作为生态学研究的重要内容,对于物种多样性保护、生态环境监测等领域具有深远的影响。将深度学习技术应用于鸟类识别,有望提高识别的准确性和效率,为鸟类学研究提供有力支持。本文综述了近年来深度学习在鸟类识别中的应用进展,包括基于图像和声音的鸟类识别系统,分析了其技术框架、实现方法以及在实际应用中的效果。通过对相关文献的梳理,
- 《SoH技术前沿:解锁电池健康密码,引领智能能源未来》
homelook
能源
SoH技术综述一、引言锂离子电池健康状态(StateofHealth,SoH)评估是电池管理系统(BatteryManagementSystem,BMS)的关键技术之一。SoH反映了电池当前性能与新电池性能的比值,通常以百分比表示。准确的SoH评估对于电池的高效、健康和安全运行至关重要,尤其是在电动汽车和储能系统中。本文综述了SoH评估的主要技术进展与趋势,旨在为相关研究和应用提供参考。二、SoH
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文