pytorch实现用CNN和LSTM对文本进行分类

model.py:
#!/usr/bin/python
# -*- coding: utf-8 -*-

import torch
from torch import nn
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F

class TextRNN(nn.Module):
    """文本分类,RNN模型"""
    def __init__(self):
        super(TextRNN, self).__init__()
        # 三个待输入的数据
        self.embedding = nn.Embedding(5000, 64)  # 进行词嵌入
        # self.rnn = nn.LSTM(input_size=64, hidden_size=128, num_layers=2, bidirectional=True)
        self.rnn = nn.GRU(input_size=64, hidden_size=128, num_layers=2, bidirectional=True)
        self.f1 = nn.Sequential(nn.Linear(256,128),
                                nn.Dropout(0.8),
                                nn.ReLU())
        self.f2 = nn.Sequential(nn.Linear(128,10),
                                nn.Softmax())

    def forward(self, x):
        x = self.embedding(x)
        x,_ = self.rnn(x)
        x = F.dropout(x,p=0.8)
        x = self.f1(x[:,-1,:])
        return self.f2(x)

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.embedding = nn.Embedding(5000,64)
        self.conv = nn.Conv1d(64,256,5)
        self.f1 = nn.Sequential(nn.Linear(256*596, 128),
                                nn.ReLU())
        self.f2 = nn.Sequential(nn.Linear(128, 10),
                                nn.Softmax())
    def forward(self, x):
        x = self.embedding(x)
        x = x.detach().numpy()
        x = np.transpose(x,[0,2,1])
        x = torch.Tensor(x)
        x = Variable(x)
        x = self.conv(x)
        x = x.view(-1,256*596)
        x = self.f1(x)
        return self.f2(x)
train.py:
# coding: utf-8

from __future__ import print_function
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
import os

import numpy as np

from model import TextRNN,TextCNN
from cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab

base_dir = 'cnews'
train_dir = os.path.join(base_dir, 'cnews.train.txt')
test_dir = os.path.join(base_dir, 'cnews.test.txt')
val_dir = os.path.join(base_dir, 'cnews.val.txt')
vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')


def train():
    x_train, y_train = process_file(train_dir, word_to_id, cat_to_id,600)#获取训练数据每个字的id和对应标签的oe-hot形式
    x_val, y_val = process_file(val_dir, word_to_id, cat_to_id,600)
    #使用LSTM或者CNN
    model = TextRNN()
    # model = TextCNN()
    #选择损失函数
    Loss = nn.MultiLabelSoftMarginLoss()
    # Loss = nn.BCELoss()
    # Loss = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(),lr=0.001)
    best_val_acc = 0
    for epoch in range(1000):
        batch_train = batch_iter(x_train, y_train,100)
        for x_batch, y_batch in batch_train:
            x = np.array(x_batch)
            y = np.array(y_batch)
            x = torch.LongTensor(x)
            y = torch.Tensor(y)
            # y = torch.LongTensor(y)
            x = Variable(x)
            y = Variable(y)
            out = model(x)
            loss = Loss(out,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            accracy = np.mean((torch.argmax(out,1)==torch.argmax(y,1)).numpy())
        #对模型进行验证
        if (epoch+1)%20 == 0:
            batch_val = batch_iter(x_val, y_val, 100)
            for x_batch, y_batch in batch_train:
                x = np.array(x_batch)
                y = np.array(y_batch)
                x = torch.LongTensor(x)
                y = torch.Tensor(y)
                # y = torch.LongTensor(y)
                x = Variable(x)
                y = Variable(y)
                out = model(x)
                loss = Loss(out, y)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                accracy = np.mean((torch.argmax(out, 1) == torch.argmax(y, 1)).numpy())
                if accracy > best_val_acc:
                    torch.save(model.state_dict(),'model_params.pkl')
                    best_val_acc = accracy
                print(accracy)

if __name__ == '__main__':
    #获取文本的类别及其对应id的字典
    categories, cat_to_id = read_category()
    #获取训练文本中所有出现过的字及其所对应的id
    words, word_to_id = read_vocab(vocab_dir)
    #获取字数
    vocab_size = len(words)
    train()
test.py:
# coding: utf-8

from __future__ import print_function

import os
import tensorflow.contrib.keras as kr
import torch
from torch import nn
from cnews_loader import read_category, read_vocab
from model import TextRNN
from torch.autograd import Variable
import numpy as np
try:
    bool(type(unicode))
except NameError:
    unicode = str

base_dir = 'cnews'
vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.embedding = nn.Embedding(5000,64)
        self.conv = nn.Conv1d(64,256,5)
        self.f1 = nn.Sequential(nn.Linear(152576, 128),
                                nn.ReLU())
        self.f2 = nn.Sequential(nn.Linear(128, 10),
                                nn.Softmax())
    def forward(self, x):
        x = self.embedding(x)
        x = x.detach().numpy()
        x = np.transpose(x,[0,2,1])
        x = torch.Tensor(x)
        x = Variable(x)
        x = self.conv(x)
        x = x.view(-1,152576)
        x = self.f1(x)
        return self.f2(x)

class CnnModel:
    def __init__(self):
        self.categories, self.cat_to_id = read_category()
        self.words, self.word_to_id = read_vocab(vocab_dir)
        self.model = TextCNN()
        self.model.load_state_dict(torch.load('model_params.pkl'))

    def predict(self, message):
        # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行
        content = unicode(message)
        data = [self.word_to_id[x] for x in content if x in self.word_to_id]
        data = kr.preprocessing.sequence.pad_sequences([data],600)
        data = torch.LongTensor(data)
        y_pred_cls = self.model(data)
        class_index = torch.argmax(y_pred_cls[0]).item()
        return self.categories[class_index]

class RnnModel:
    def __init__(self):
        self.categories, self.cat_to_id = read_category()
        self.words, self.word_to_id = read_vocab(vocab_dir)
        self.model = TextRNN()
        self.model.load_state_dict(torch.load('model_rnn_params.pkl'))

    def predict(self, message):
        # 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行
        content = unicode(message)
        data = [self.word_to_id[x] for x in content if x in self.word_to_id]
        data = kr.preprocessing.sequence.pad_sequences([data], 600)
        data = torch.LongTensor(data)
        y_pred_cls = self.model(data)
        class_index = torch.argmax(y_pred_cls[0]).item()
        return self.categories[class_index]


if __name__ == '__main__':
    model = CnnModel()
    # model = RnnModel()
    test_demo = ['湖人助教力助科比恢复手感 他也是阿泰的精神导师新浪体育讯记者戴高乐报道  上赛季,科比的右手食指遭遇重创,他的投篮手感也因此大受影响。不过很快科比就调整了自己的投篮手型,并通过这一方式让自己的投篮命中率回升。而在这科比背后,有一位特别助教对科比帮助很大,他就是查克·珀森。珀森上赛季担任湖人的特别助教,除了帮助科比调整投篮手型之外,他的另一个重要任务就是担任阿泰的精神导师。来到湖人队之后,阿泰收敛起了暴躁的脾气,成为湖人夺冠路上不可或缺的一员,珀森的“心灵按摩”功不可没。经历了上赛季的成功之后,珀森本赛季被“升职”成为湖人队的全职助教,每场比赛,他都会坐在球场边,帮助禅师杰克逊一起指挥湖人球员在场上拼杀。对于珀森的工作,禅师非常欣赏,“查克非常善于分析问题,”菲尔·杰克逊说,“他总是在寻找问题的答案,同时也在找造成这一问题的原因,这是我们都非常乐于看到的。我会在平时把防守中出现的一些问题交给他,然后他会通过组织球员练习找到解决的办法。他在球员时代曾是一名很好的外线投手,不过现在他与内线球员的配合也相当不错。',
                 '弗老大被裁美国媒体看热闹“特权”在中国像蠢蛋弗老大要走了。虽然他只在首钢男篮效力了13天,而且表现毫无亮点,大大地让球迷和俱乐部失望了,但就像中国人常说的“好聚好散”,队友还是友好地与他告别,俱乐部与他和平分手,球迷还请他留下了在北京的最后一次签名。相比之下,弗老大的同胞美国人却没那么“宽容”。他们嘲讽这位NBA前巨星的英雄迟暮,批评他在CBA的业余表现,还惊讶于中国人的“大方”。今天,北京首钢俱乐部将与弗朗西斯继续商讨解约一事。从昨日的进展来看,双方可以做到“买卖不成人意在”,但回到美国后,恐怕等待弗朗西斯的就没有这么轻松的环境了。进展@北京昨日与队友告别  最后一次为球迷签名弗朗西斯在13天里为首钢队打了4场比赛,3场的得分为0,只有一场得了2分。昨天是他来到北京的第14天,虽然他与首钢还未正式解约,但双方都明白“缘分已尽”。下午,弗朗西斯来到首钢俱乐部与队友们告别。弗朗西斯走到队友身边,依次与他们握手拥抱。“你们都对我很好,安排的条件也很好,我很喜欢这支球队,想融入你们,但我现在真的很不适应。希望你们']
    for i in test_demo:
        print(i,":",model.predict(i))
cnews_loader.py:
# coding: utf-8

import sys
from collections import Counter

import numpy as np
import tensorflow.contrib.keras as kr

if sys.version_info[0] > 2:
    is_py3 = True
else:
    reload(sys)
    sys.setdefaultencoding("utf-8")
    is_py3 = False


def native_word(word, encoding='utf-8'):
    """如果在python2下面使用python3训练的模型,可考虑调用此函数转化一下字符编码"""
    if not is_py3:
        return word.encode(encoding)
    else:
        return word


def native_content(content):
    if not is_py3:
        return content.decode('utf-8')
    else:
        return content


def open_file(filename, mode='r'):
    """
    常用文件操作,可在python2和python3间切换.
    mode: 'r' or 'w' for read or write
    """
    if is_py3:
        return open(filename, mode, encoding='utf-8', errors='ignore')
    else:
        return open(filename, mode)


def read_file(filename):
    """读取文件数据"""
    contents, labels = [], []
    with open_file(filename) as f:
        for line in f:
            try:
                label, content = line.strip().split('\t')
                if content:
                    contents.append(list(native_content(content)))
                    labels.append(native_content(label))
            except:
                pass
    return contents, labels


def build_vocab(train_dir, vocab_dir, vocab_size=5000):
    """根据训练集构建词汇表,存储"""
    data_train, _ = read_file(train_dir)

    all_data = []
    for content in data_train:
        all_data.extend(content)

    counter = Counter(all_data)
    count_pairs = counter.most_common(vocab_size - 1)
    words, _ = list(zip(*count_pairs))
    # 添加一个  来将所有文本pad为同一长度
    words = [''] + list(words)
    open_file(vocab_dir, mode='w').write('\n'.join(words) + '\n')


def read_vocab(vocab_dir):
    """读取词汇表"""
    # words = open_file(vocab_dir).read().strip().split('\n')
    with open_file(vocab_dir) as fp:
        # 如果是py2 则每个值都转化为unicode
        words = [native_content(_.strip()) for _ in fp.readlines()]
    word_to_id = dict(zip(words, range(len(words))))
    return words, word_to_id


def read_category():
    """读取分类目录,固定"""
    categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']

    categories = [native_content(x) for x in categories]

    cat_to_id = dict(zip(categories, range(len(categories))))

    return categories, cat_to_id


def to_words(content, words):
    """将id表示的内容转换为文字"""
    return ''.join(words[x] for x in content)


def process_file(filename, word_to_id, cat_to_id, max_length=600):
    """将文件转换为id表示"""
    contents, labels = read_file(filename)#读取训练数据的每一句话及其所对应的类别
    data_id, label_id = [], []
    for i in range(len(contents)):
        data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])#将每句话id化
        label_id.append(cat_to_id[labels[i]])#每句话对应的类别的id
    #
    # # 使用keras提供的pad_sequences来将文本pad为固定长度
    x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)
    y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id))  # 将标签转换为one-hot表示
    #
    return x_pad, y_pad


def batch_iter(x, y, batch_size=64):
    """生成批次数据"""
    data_len = len(x)
    num_batch = int((data_len - 1) / batch_size) + 1

    indices = np.random.permutation(np.arange(data_len))
    x_shuffle = x[indices]
    y_shuffle = y[indices]

    for i in range(num_batch):
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id]

 

你可能感兴趣的:(人工智能,深度学习,自然语言处理,文本分类)