常见25种深度学习模型的github代码

1 Feed forward neural networks (FF or FFNN) and perceptrons (P)

前馈神经网络和感知机,信息从前(输入)往后(输出)流动,一般用反向传播(BP)来训练。算是一种监督学习。

对应的代码https://github.com/danijar/layered

https://github.com/civisanalytics/muffnn

2 Radial basis function (RBF)

径向基函数网络,是一种径向基函数作为激活函数的FFNNs(前馈神经网络)。

对应的代码https://github.com/eugeniashurko/rbfnnpy

3 Hopfield network (HN)

Hopfield网络,是一种每个神经元都跟其它神经元相连接的神经网络。

对应的代码https://github.com/yosukekatada/Hopfield_network

4 Markov chains (MC or discrete time Markov Chain, DTMC)

马尔可夫链 或离散时间马尔可夫链,算是BMs和HNs的雏形。

对应的代码Markov chains:https://github.com/jsvine/markovify

DTMC:https://github.com/AndrewWalker/dtmc

6 Restricted Boltzmann machines (RBM)

受限玻尔兹曼机,和玻尔兹曼机以及Hopfield网络都比较类似。

对应的代码https://github.com/echen/restricted-boltzmann-machines

7 Autoencoders (AE)

自动编码,和FFNN有些类似,它更像是FFNN的另一种用法,而不是本质上完全不同的另一种架构。

对应的代码https://github.com/caglar/autoencoders/blob/master/ae.py

8 Sparse autoencoders (SAE)

稀疏自动编码,跟自动编码在某种程度比较相反。

对应的代码https://github.com/caglar/autoencoders/blob/master/sa.py

9 Variational autoencoders (VAE)

变分自动编码,和AE架构相似,不同的是:输入样本的一个近似概率分布。这使得它跟BM、RBM更相近。

对应的代码https://github.com/mattjj/svae

10 Denoising autoencoders (DAE)

去噪自动编码,也是一种自编码机,它不仅需要训练数据,还需要带噪音的训练数据。对应对应的代码https://github.com/caglar/autoencoders/blob/master/da.py

11 Deep belief networks (DBN)

深度信念网络,由多个受限玻尔兹曼机或变分自动编码堆砌而成。

对应的代码https://github.com/albertbup/deep-belief-network

12 Convolutional neural networks (CNN or deep convolutional neural networks, DCNN)

卷积神经网络

对应的代码:

CNN:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_CNN.py

DCNN:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_DeepCNN.py

13 Deconvolutional networks (DN)

去卷积网络,又叫逆图形网络,是一种逆向的卷积神经网络。

对应的代码https://github.com/ifp-uiuc/anna

14Deep convolutional inverse graphics networks (DCIGN)

深度卷积逆向图网络,实际上是VAE,且分别用CNN、DNN来作编码和解码。

对应的代码https://github.com/yselivonchyk/TensorFlow_DCIGN

15 Generative adversarial networks (GAN)

生成对抗网络,Goodfellow的封神之作

对应的代码https://github.com/devnag/pytorch-generative-adversarial-networks

16 Recurrent neural networks (RNN)

循环神经网络,这个更不用解释,做语音、NLP的没有人不知道,甚至非AI相关人员也知道。

对应的代码https://github.com/farizrahman4u/recurrentshop

17 Long / short term memory (LSTM)

长短期记忆网络,RNN的变种,解决梯度消失/爆炸的问题,也不用解释,这几年刷爆各大顶会。

对应的代码https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_LSTM.py

18 Gated recurrent units (GRU)

门循环单元,类似LSTM的定位,算是LSTM的简化版。

对应的代码https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_GRU.py

19 Neural Turing machines (NTM)

神经图灵机,LSTM的抽象,以窥探LSTM的内部细节。具有读取、写入、修改状态的能力。

对应的代码https://github.com/MarkPKCollier/NeuralTuringMachine

20 Bidirectional recurrent neural networks, bidirectional long / short term memory networks and bidirectional gated recurrent units (BiRNN, BiLSTM and BiGRU respectively)

双向循环神经网络、双向长短期记忆网络和双向门控循环单元,把RNN、双向的LSTM、GRU双向,不再只是从左到右,而是既有从左到右又有从右到左。

对应的代码:

BiLSTM:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_BiLSTM.py

BiGRU:https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch/blob/master/models/model_BiGRU.py

21 Deep residual networks (DRN)

深度残差网络,是非常深的FFNN,它可以把信息从某一层传至后面几层(通常2-5层)。

对应的代码https://github.com/KaimingHe/deep-residual-networks

22 Echo state networks (ESN)

回声状态网络,是另一种不同类型的(循环)网络。

对应的代码https://github.com/m-colombo/Tensorflow-EchoStateNetwork

23 Extreme learning machines (ELM)

极限学习机,本质上是随机连接的FFNN。

对应的代码https://github.com/dclambert/Python-ELM

24 Liquid state machines (LSM)

液态机,跟ESN类似,区别是用阈值激活函数取代了sigmoid激活函数。

对应的代码https://github.com/kghose/Liquid

25 Support vector machines (SVM)

支持向量机,入门机器学习的人都知道

对应的代码https://github.com/ajtulloch/svmpy

26 Kohonen networks (KN, also self organising (feature) map, SOM, SOFM)

Kohonen 网络,也称之为自组织(特征)映射。

对应的代码KN/SOM:https://github.com/mljs/som

你可能感兴趣的:(深度学习)