缩写
|
英语
|
汉语
|
A
|
|
|
Activation Function
|
激活函数
|
|
Adversarial Networks
|
对抗网络
|
|
Affine Layer
|
仿射层
|
|
agent
|
代理/智能体
|
|
algorithm
|
算法
|
|
alpha-beta pruning
|
α-β剪枝
|
|
|
anomaly detection
|
异常检测
|
approximation
|
近似
|
|
AGI
|
Artificial General Intelligence
|
通用人工智能
|
AI
|
Artificial Intelligence
|
人工智能
|
association analysis
|
关联分析
|
|
attention mechanism
|
注意机制
|
|
autoencoder
|
自编码器
|
|
ASR
|
automatic speech recognition
|
自动语音识别
|
automatic summarization
|
自动摘要
|
|
average gradient
|
平均梯度
|
|
Average-Pooling
|
平均池化
|
|
B
|
|
|
BP
|
backpropagation
|
反向传播
|
BPTT
|
Backpropagation Through Time
|
通过时间的反向传播
|
BN
|
Batch Normalization
|
分批标准化
|
Bayesian network
|
贝叶斯网络
|
|
Bias-Variance Dilemma
|
偏差/方差困境
|
|
Bi-LSTM
|
Bi-directional Long-Short Term Memory
|
双向长短期记忆
|
bias
|
偏置/偏差
|
|
|
big data
|
大数据
|
|
Boltzmann machine
|
玻尔兹曼机
|
C
|
|
|
CPU
|
Central Processing Unit
|
中央处理器
|
chunk
|
词块
|
|
|
clustering
|
聚类
|
|
cluster analysis
|
聚类分析
|
co-adapting
|
共适应
|
|
co-occurrence
|
共现
|
|
Computation Cost
|
计算成本
|
|
Computational Linguistics
|
计算语言学
|
|
computer vision
|
计算机视觉
|
|
|
concept drift
|
概念漂移
|
CRF
|
conditional random field
|
条件随机域/场
|
|
convergence
|
收敛
|
CA
|
conversational agent
|
会话代理
|
convexity
|
凸性
|
|
CNN
|
convolutional neural network
|
卷积神经网络
|
|
Cost Function
|
成本函数
|
|
cross entropy
|
交叉熵
|
D
|
|
|
|
Decision Boundary
|
决策边界
|
|
Decision Trees
|
决策树
|
DBN
|
Deep Belief Network
|
深度信念网络
|
DCGAN
|
Deep Convolutional Generative Adversarial Network
|
深度卷积生成对抗网络
|
DL
|
deep learning
|
深度学习
|
DNN
|
deep neural network
|
深度神经网络
|
Deep Q-Learning
|
深度Q学习
|
|
DQN
|
Deep Q-Network
|
深度Q网络
|
DNC
|
differentiable neural computer
|
可微分神经计算机
|
dimensionality reduction algorithm
|
降维算法
|
|
|
discriminative model
|
判别模型
|
|
discriminator
|
判别器
|
|
divergence
|
散度
|
|
domain adaption
|
领域自适应
|
|
Dropout
|
|
|
Dynamic Fusion
|
动态融合
|
E
|
|
|
|
Embedding
|
嵌入
|
|
emotional analysis
|
情绪分析
|
|
End-to-End
|
端到端
|
EM
|
Expectation-Maximization
|
期望最大化
|
Exploding Gradient Problem
|
梯度爆炸问题
|
|
ELM
|
Extreme Learning Machine
|
超限学习机
|
F
|
|
|
FAIR
|
Facebook Artificial Intelligence Research
|
Facebook人工智能研究所
|
|
factorization
|
因子分解
|
feature engineering
|
特征工程
|
|
|
Featured Learning
|
特征学习
|
|
Feedforward Neural Networks
|
前馈神经网络
|
G
|
|
|
game theory
|
博弈论
|
|
GMM
|
Gaussian Mixture Model
|
高斯混合模型
|
GA
|
Genetic Algorithm
|
遗传算法
|
|
Generalization
|
泛化
|
GAN
|
Generative Adversarial Networks
|
生成对抗网络
|
Generative Model
|
生成模型
|
|
|
Generator
|
生成器
|
|
Global Optimization
|
全局优化
|
GNMT
|
Google Neural Machine Translation
|
谷歌神经机器翻译
|
Gradient Descent
|
梯度下降
|
|
graph theory
|
图论
|
|
GPU
|
graphics processing unit
|
图形处理单元/图形处理器
|
H
|
|
|
HDM
|
hidden dynamic model
|
隐动态模型
|
|
hidden layer
|
隐藏层
|
HMM
|
Hidden Markov Model
|
隐马尔可夫模型
|
hybrid computing
|
混合计算
|
|
|
hyperparameter
|
超参数
|
I
|
|
|
ICA
|
Independent Component Analysis
|
独立成分分析
|
|
input
|
输入
|
ICML
|
International Conference for Machine Learning
|
国际机器学习大会
|
language phenomena
|
语言现象
|
|
latent dirichlet allocation
|
隐含狄利克雷分布
|
|
J
|
|
|
JSD
|
Jensen-Shannon Divergence
|
JS距离
|
K
|
|
|
K-Means Clustering
|
K-均值聚类
|
|
K-NN
|
K-Nearest Neighbours Algorithm
|
K-最近邻算法
|
|
Knowledge Representation
|
知识表征
|
KB
|
knowledge base
|
知识库
|
L
|
|
|
|
Latent Dirichlet Allocation
|
隐狄利克雷分布
|
LSA
|
latent semantic analysis
|
潜在语义分析
|
learner
|
学习器
|
|
|
Linear Regression
|
线性回归
|
|
log likelihood
|
对数似然
|
|
Logistic Regression
|
Logistic回归
|
LSTM
|
Long-Short Term Memory
|
长短期记忆
|
|
loss
|
损失
|
M
|
|
|
MT
|
machine translation
|
机器翻译
|
Max-Pooling
|
最大池化
|
|
Maximum Likelihood
|
最大似然
|
|
|
minimax game
|
最小最大博弈
|
|
Momentum
|
动量
|
MLP
|
Multilayer Perceptron
|
多层感知器
|
multi-document summarization
|
多文档摘要
|
|
MLP
|
multi layered perceptron
|
多层感知器
|
|
multimodal learning
|
多模态学习
|
multiple linear regression
|
多元线性回归
|
|
N
|
|
|
Naive Bayes Classifier
|
朴素贝叶斯分类器
|
|
named entity recognition
|
命名实体识别
|
|
|
Nash equilibrium
|
纳什均衡
|
NLG
|
natural language generation
|
自然语言生成
|
NLP
|
natural language processing
|
自然语言处理
|
NLL
|
Negative Log Likelihood
|
负对数似然
|
NMT
|
Neural Machine Translation
|
神经机器翻译
|
NTM
|
Neural Turing Machine
|
神经图灵机
|
NCE
|
noise-contrastive estimation
|
噪音对比估计
|
|
non-convex optimization
|
非凸优化
|
non-negative matrix factorization
|
非负矩阵分解
|
|
Non-Saturating Game
|
非饱和博弈
|
|
O
|
|
|
|
objective function
|
目标函数
|
Off-Policy
|
离策略
|
|
On-Policy
|
在策略
|
|
one shot learning
|
一次性学习
|
|
|
output
|
输出
|
P
|
|
|
|
Parameter
|
参数
|
parse tree
|
解析树
|
|
part-of-speech tagging
|
词性标注
|
|
PSO
|
Particle Swarm Optimization
|
粒子群优化算法
|
perceptron
|
感知器
|
|
polarity detection
|
极性检测
|
|
pooling
|
池化
|
|
PPGN
|
Plug and Play Generative Network
|
即插即用生成网络
|
PCA
|
principal component analysis
|
主成分分析
|
|
Probability Graphical Model
|
概率图模型
|
Q
|
|
|
QNN
|
Quantized Neural Network
|
量子化神经网络
|
|
quantum computer
|
量子计算机
|
|
Quantum Computing
|
量子计算
|
R
|
|
|
RBF
|
Radial Basis Function
|
径向基函数
|
Random Forest Algorithm
|
随机森林算法
|
|
ReLU
|
Rectified Linear Unit
|
线性修正单元/线性修正函数
|
RNN
|
Recurrent Neural Network
|
循环神经网络
|
recursive neural network
|
递归神经网络
|
|
RL
|
reinforcement learning
|
强化学习
|
representation
|
表征
|
|
representation learning
|
表征学习
|
|
|
Residual Mapping
|
残差映射
|
Residual Network
|
残差网络
|
|
RBM
|
Restricted Boltzmann Machine
|
受限玻尔兹曼机
|
Robot
|
机器人
|
|
Robustness
|
稳健性
|
|
RE
|
Rule Engine
|
规则引擎
|
S
|
|
|
|
saddle point
|
鞍点
|
Self-Driving
|
自动驾驶
|
|
SOM
|
self organised map
|
自组织映射
|
|
Semi-Supervised Learning
|
半监督学习
|
sentiment analysis
|
情感分析
|
|
SLAM
|
simultaneous localization and mapping
|
同步定位与地图构建
|
SVD
|
Singular Value Decomposition
|
奇异值分解
|
Spectral Clustering
|
谱聚类
|
|
Speech Recognition
|
语音识别
|
|
SGD
|
stochastic gradient descent
|
随机梯度下降
|
|
supervised learning
|
监督学习
|
SVM
|
Support Vector Machine
|
支持向量机
|
synset
|
同义词集
|
|
T
|
|
|
t-SNE
|
T-Distribution Stochastic Neighbour Embedding
|
T-分布随机近邻嵌入
|
tensor
|
张量
|
|
TPU
|
Tensor Processing Units
|
张量处理单元
|
|
the least square method
|
最小二乘法
|
Threshold
|
阙值
|
|
Time Step
|
时间步骤
|
|
tokenization
|
标记化
|
|
treebank
|
树库
|
|
|
transfer learning
|
迁移学习
|
Turing Machine
|
图灵机
|
|
U
|
|
|
|
unsupervised learning
|
无监督学习
|
V
|
|
|
Vanishing Gradient Problem
|
梯度消失问题
|
|
VC Theory
|
Vapnik–Chervonenkis theory
|
万普尼克-泽范兰杰斯理论
|
|
von Neumann architecture
|
冯·诺伊曼架构/结构
|
W
|
|
|
WGAN
|
Wasserstein GAN
|
|
W
|
weight
|
权重
|
word embedding
|
词嵌入
|
|
WSD
|
word sense disambiguation
|
词义消歧
|
X
|
|
|
Y
|
|
|
Z
|
|
|
ZSL
|
zero-shot learning
|
零次学习
|
|
zero-data learning
|
零数据学习
|