Python3 进阶教程最全总结


Python作为一门胶水语言,其实并不需要花很大的力气去学习,如果有编程基础的话,一两周的时间基本上就能了解基础语法。在实际应用过程中,大多数人使用Python还是像胶水一样,作为辅助工具,使用Python支持的各种库来实现自己工程项目中的某些功能。学习编程,最重要的还是拿来用,了解基本语法之后,通过实战项目会对Python有更深的了解。如果是看开源代码,可能会遇到许多比较难理解的语法和实现方法,这很可能是Python不常见的功能。本文是对个人在实际使用过程中遇到的,稍有难度但大量使用的,基础Python教程不过多涉及的Python语法的总结。本文并没有对Python中的功能进行具体描述,而是一个概览,这样在使用过程中,根据需求的再针对学习。


系列文章

Python3 基础教程最全总结
Python3 进阶教程最全总结

一文掌握Python基础知识
一文掌握Python列表/元组/字典/集合
一文掌握Python函数用法
Python面向对象之类与对象详解
Python面向对象之装饰器与封装详解
Python面向对象之继承和多态详解
Python异常处理和模块详解
Python文件(I/O)操作详解

Python网络编程之Socket原理与基本用法
Python多线程threading模块基本用法

Python爬虫正则表达式详解 爬爬爬爬个虫子
Python爬虫实战Urllib抓取段子
Python爬虫实战抓包分析视频评论
Python爬虫实战Requests抓取博客文章
Python爬虫实战Scrapy抓取商品信息并写入数据库



文章目录

  • 系列文章
  • 1. ==面向对象==
    • 1.1 面向对象简介
    • 1.2 类定义与类对象
    • 1.3 `__init__()`方法
    • 1.4 类的方法
    • 1.5 单类继承
    • 1.6 多类继承
    • 1.7 方法重写
    • 1.8 类属性与方法
  • 2. ==多线程==
    • 2.1 线程简介
    • 2.2 _thread
    • 2.3 threading
    • 2.4 线程同步
    • 2.5 线程优先级队列( Queue)
  • 3. 标准库概览
    • 3.1 操作系统接口
    • 3.2 文件通配符
    • 3.3 命令行参数
    • 3.4 错误输出重定向和程序终止
    • 3.5 字符串正则匹配
    • 3.6 数学
    • 3.7 访问 互联网
    • 3.8 日期和时间
    • 3.9 数据压缩
    • 3.10 性能度量
    • 3.11 测试模块
  • 4. 网络编程
    • 4.1 socket
    • 4.2 Internet
  • 5. ==正则表达式==
    • 5.1 re.match函数
    • 5.2 re.search方法
    • 5.3 re.match与re.search的区别
    • 5.4 检索和替换
    • 5.5 正则表达式修饰符 - 可选标志
    • 5.6 正则表达式模式
  • 6. 日期和时间
    • 6.1 时间元组
    • 6.1 获取当前时间
    • 6.2 获取格式化的时间
    • 6.3 格式化日期
    • 6.4 获取某月日历
    • 6.5 time模块
    • 6.6 calendar模块
    • 6.7 datetime 模块
  • 7. Python 内置函数
  • 8. SMTP 发送邮件
  • 9. 小游戏
  • 10. 爬虫实战
  • 11. CGI 编程
  • 12. XML解析
  • 13. JSON解析
  • 14. Python MySQL
  • 15. Python MongoDB
  • 16. 机器学习

1. 面向对象

Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。

如果以前没有接触过面向对象的编程语言,那可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于更容易地学习Python的面向对象编程。

接下来先简单了解面向对象的一些基本特征。


1.1 面向对象简介

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据。
  • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 局部变量:定义在方法中的变量,只作用于当前实例的类。
  • 实例变量:在类的声明中,属性是用变量来表示的。这种变量就称为实例变量,是在类声明的内部但是在类的其他成员方法之外声明的。
  • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化:创建一个类的实例,类的具体对象。
  • 方法:类中定义的函数。
  • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

和其它编程语言相比,Python 在尽可能不增加新的语法和语义的情况下加入了类机制。

Python中的类提供了面向对象编程的所有基本功能:类的继承机制允许多个基类,派生类可以覆盖基类中的任何方法,方法中可以调用基类中的同名方法。对象可以包含任意数量和类型的数据。


1.2 类定义与类对象

  1. 类定义
class ClassName:
    <statement-1>
    .
    .
    .
    <statement-N>
  1. 类对象
    类对象支持两种操作:属性引用实例化

    属性引用使用和 Python 中所有的属性引用一样的标准语法:obj.name。

    类对象创建后,类命名空间中所有的命名都是有效属性名。所以如果类定义是这样:

class MyClass:
    """一个简单的类实例"""
    i = 12345
    def f(self):
        return 'hello world'

# 实例化类
x = MyClass()

# 访问类的属性和方法
print("MyClass 类的属性 i 为:", x.i)
print("MyClass 类的方法 f 输出为:", x.f())

执行以上程序输出结果为:

MyClass 类的属性 i 为: 12345
MyClass 类的方法 f 输出为: hello world

1.3 __init__()方法

很多类都倾向于将对象创建为有初始状态的。因此类可能会定义一个名为 __init__()的特殊方法(构造方法),像下面这样:

def __init__(self):
    self.data = []
  1. 类定义了 __init__()方法的话,类的实例化操作会自动调用 __init__()方法。

  2. 使用__init__()方法为对象属性或创建对象时必须执行的其他操作分配值。当然, __init__()方法可以有参数,参数通过 __init__()传递到类的实例化操作上。

  def __init__(self, name, age):
    self.name = name
    self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)

输出:

John
36

1.4 类的方法

在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数:

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ''
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

# 实例化类
p = people('W3Cschool',10,30)
p.speak()

执行以上程序输出结果为:

W3Cschool 说:10 岁。

1.5 单类继承

Python 同样支持类的继承,如果一种语言不支持继承,类就没有什么意义。派生类的定义如下所示:

class DerivedClassName(BaseClassName1):
    <statement-1>
    .
    .
    .
    <statement-N>

需要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类中是否包含方法。

BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:

class DerivedClassName(modname.BaseClassName):

实例:

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ''
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

#单继承示例
class student(people):
    grade = ''
    def __init__(self,n,a,w,g):
        #调用父类的构函
        people.__init__(self,n,a,w)
        self.grade = g
    #覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade))



s = student('ken',10,60,3)
s.speak()

执行以上程序输出结果为:

ken 说:10 岁了,我在读 3 年级

1.6 多类继承

Python同样有限的支持多继承形式。多继承的类定义形如下例:

class DerivedClassName(Base1, Base2, Base3):
    <statement-1>
    .
    .
    .
    <statement-N>

需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找父类中是否包含方法。

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ''
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

#单继承示例
class student(people):
    grade = ''
    def __init__(self,n,a,w,g):
        #调用父类的构函
        people.__init__(self,n,a,w)
        self.grade = g
    #覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade))

#另一个类,多重继承之前的准备
class speaker():
    topic = ''
    name = ''
    def __init__(self,n,t):
        self.name = n
        self.topic = t
    def speak(self):
        print("我叫 %s,我是一个演说家,我演讲的主题是 %s"%(self.name,self.topic))

#多重继承
class sample(speaker,student):
    a =''
    def __init__(self,n,a,w,g,t):
        student.__init__(self,n,a,w,g)
        speaker.__init__(self,n,t)

test = sample("Tim",25,80,4,"Python")
test.speak()   #方法名同,默认调用的是在括号中排前地父类的方法

执行以上程序输出结果为:

我叫 Tim,我是一个演说家,我演讲的主题是 Python

1.7 方法重写

如果父类方法的功能不能满足需求,可以在子类重写父类的方法,实例如下:

#!/usr/bin/python3

class Parent:        # 定义父类
   def myMethod(self):
      print ('调用父类方法')

class Child(Parent): # 定义子类
   def myMethod(self):
      print ('调用子类方法')

c = Child()          # 子类实例
c.myMethod()         # 子类调用重写方法

执行以上程序输出结果为:

调用子类方法

1.8 类属性与方法

  1. 类的私有属性
    __private_attrs:两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs

  2. 类的方法
    在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数。

  3. 类的私有方法
    __private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 slef.__private_methods

实例如下:

#!/usr/bin/python3

class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0    # 公开变量

    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print (self.__secretCount)

counter = JustCounter()
counter.count()
counter.count()
print (counter.publicCount)
print (counter.__secretCount)  # 报错,实例不能访问私有变量

执行以上程序输出结果为:

1
2
2
Traceback (most recent call last):
  File "test.py", line 16, in <module>
    print (counter.__secretCount)  # 报错,实例不能访问私有变量
AttributeError: 'JustCounter' object has no attribute '__secretCount'
  1. 类的专有方法:
    __init__: 构造函数,在生成对象时调用
    __del__ : 析构函数,释放对象时使用
    __repr__: 打印,转换
    __setitem__ : 按照索引赋值
    __getitem__: 按照索引获取值
    __len__: 获得长度
    __cmp__: 比较运算
    __call__: 函数调用
    __add__: 加运算
    __sub__: 减运算
    __mul__: 乘运算
    __div__: 除运算
    __mod__: 求余运算
    __pow__: 乘方

  2. 运算符重载
    Python同样支持运算符重载,我么可以对类的专有方法进行重载,实例如下:

#!/usr/bin/python3

class Vector:
   def __init__(self, a, b):
      self.a = a
      self.b = b

   def __str__(self):
      return 'Vector (%d, %d)' % (self.a, self.b)
   
   def __add__(self,other):
      return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)
v2 = Vector(5,-2)
print (v1 + v2)

以上代码执行结果如下所示:

Vector(7,8)

2. 多线程

2.1 线程简介

多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度。
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。
  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) – 这就是线程的退让。

线程可以分为:

  • 内核线程:由操作系统内核创建和撤销。
  • 用户线程:不需要内核支持而在用户程序中实现的线程。

Python3 线程中常用的两个模块为:

  • _thread
  • threading(推荐使用)
    thread 模块已被废弃。用户可以使用 threading 模块代替。所以,在 Python3 中不能再使用"thread" 模块。为了兼容性,Python3 将 thread 重命名为 “_thread”。

2.2 _thread

Python中使用线程有两种方式:函数或者用类来包装线程对象

函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。语法如下:

_thread.start_new_thread ( function, args[, kwargs] )
参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。
    实例:
#!/usr/bin/python3

import _thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print ("%s: %s" % ( threadName, time.ctime(time.time()) ))

# 创建两个线程
try:
   _thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   _thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print ("Error: 无法启动线程")

while 1:
   pass

执行以上程序输出结果如下:

Thread-1: Wed Apr  6 11:36:31 2016
Thread-1: Wed Apr  6 11:36:33 2016
Thread-2: Wed Apr  6 11:36:33 2016
Thread-1: Wed Apr  6 11:36:35 2016
Thread-1: Wed Apr  6 11:36:37 2016
Thread-2: Wed Apr  6 11:36:37 2016
Thread-1: Wed Apr  6 11:36:39 2016
Thread-2: Wed Apr  6 11:36:41 2016
Thread-2: Wed Apr  6 11:36:45 2016
Thread-2: Wed Apr  6 11:36:49 2016

执行以上程后可以按下 ctrl-c to 退出。


2.3 threading

Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。

_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。

threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

使用 threading 模块创建线程
我们可以通过直接从 threading.Thread 继承创建一个新的子类,并实例化后调用 start() 方法启动新线程,即它调用了线程的 run() 方法:

#!/usr/bin/python3

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.counter, 5)
        print ("退出线程:" + self.name)

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            threadName.exit()
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")

以上程序执行结果如下;

开始线程:Thread-1
开始线程:Thread-2
Thread-1: Wed Apr  6 11:46:46 2016
Thread-1: Wed Apr  6 11:46:47 2016
Thread-2: Wed Apr  6 11:46:47 2016
Thread-1: Wed Apr  6 11:46:48 2016
Thread-1: Wed Apr  6 11:46:49 2016
Thread-2: Wed Apr  6 11:46:49 2016
Thread-1: Wed Apr  6 11:46:50 2016
退出线程:Thread-1
Thread-2: Wed Apr  6 11:46:51 2016
Thread-2: Wed Apr  6 11:46:53 2016
Thread-2: Wed Apr  6 11:46:55 2016
退出线程:Thread-2
退出主线程

2.4 线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

实例:

#!/usr/bin/python3

import threading
import time

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开启线程: " + self.name)
        # 获取锁,用于线程同步
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁,开启下一个线程
        threadLock.release()

def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print ("退出主线程")

执行以上程序,输出结果为:

开启线程: Thread-1
开启线程: Thread-2
Thread-1: Wed Apr  6 11:52:57 2016
Thread-1: Wed Apr  6 11:52:58 2016
Thread-1: Wed Apr  6 11:52:59 2016
Thread-2: Wed Apr  6 11:53:01 2016
Thread-2: Wed Apr  6 11:53:03 2016
Thread-2: Wed Apr  6 11:53:05 2016
退出主线程

2.5 线程优先级队列( Queue)

Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。

这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。

Queue 模块中的常用方法:

Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]])获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
实例:

#!/usr/bin/python3

import queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print ("开启线程:" + self.name)
        process_data(self.name, self.q)
        print ("退出线程:" + self.name)

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print ("%s processing %s" % (threadName, data))
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
    pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
    t.join()
print ("退出主线程")

以上程序执行结果:

开启线程:Thread-1
开启线程:Thread-2
开启线程:Thread-3
Thread-3 processing One
Thread-1 processing Two
Thread-2 processing Three
Thread-3 processing Four
Thread-1 processing Five
退出线程:Thread-3
退出线程:Thread-2
退出线程:Thread-1
退出主线程

3. 标准库概览

3.1 操作系统接口

os模块提供了不少与操作系统相关联的函数。

>>> import os
>>> os.getcwd()      # 返回当前的工作目录
'C:\\Python34'
>>> os.chdir('/server/accesslogs')   # 修改当前的工作目录
>>> os.system('mkdir today')   # 执行系统命令 mkdir 
0

建议使用 “import os” 风格而非 “from os import *”。这样可以保证随操作系统不同而有所变化的 os.open() 不会覆盖内置函数 open()。

在使用 os 这样的大型模块时内置的 dir() 和 help() 函数非常有用:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

针对日常的文件和目录管理任务,shutil 模块提供了一个易于使用的高级接口:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')

3.2 文件通配符

glob模块提供了一个函数用于从目录通配符搜索中生成文件列表:

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

3.3 命令行参数

通用工具脚本经常调用命令行参数。这些命令行参数以链表形式存储于 sys 模块的 argv 变量。例如在命令行中执行 “python demo.py one two three” 后可以得到以下输出结果:

>>> import sys
>>> print(sys.argv)
['demo.py', 'one', 'two', 'three']

3.4 错误输出重定向和程序终止

sys 还有 stdin,stdout 和 stderr 属性,即使在 stdout 被重定向时,后者也可以用于显示警告和错误信息。

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

3.5 字符串正则匹配

re模块为高级字符串处理提供了正则表达式工具。对于复杂的匹配和处理,正则表达式提供了简洁、优化的解决方案:

>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

如果只需要简单的功能,应该首先考虑字符串方法,因为它们非常简单,易于阅读和调试:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

3.6 数学

math模块为浮点运算提供了对底层C函数库的访问:

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0

random提供了生成随机数的工具。

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(range(100), 10)   # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random()    # random float
0.17970987693706186
>>> random.randrange(6)    # random integer chosen from range(6)
4

3.7 访问 互联网

有几个模块用于访问互联网以及处理网络通信协议。其中最简单的两个是用于处理从 urls 接收的数据的 urllib.request 以及用于发送电子邮件的 smtplib:

>>> from urllib.request import urlopen
>>> for line in urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
...     line = line.decode('utf-8')  # Decoding the binary data to text.
...     if 'EST' in line or 'EDT' in line:  # look for Eastern Time
...         print(line)

<BR>Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('[email protected]', '[email protected]',
... """To: [email protected]
... From: [email protected]
...
... Beware the Ides of March.
... """)
>>> server.quit()

注意第二个例子需要本地有一个在运行的邮件服务器。


3.8 日期和时间

datetime模块为日期和时间处理同时提供了简单和复杂的方法。

支持日期和时间算法的同时,实现的重点放在更有效的处理和格式化输出。

该模块还支持时区处理:

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

3.9 数据压缩

以下模块直接支持通用的数据打包和压缩格式:zlib,gzip,bz2,zipfile,以及 tarfile。

>>> import zlib
>>> s = b'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
b'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979

3.10 性能度量

有些用户对了解解决同一问题的不同方法之间的性能差异很感兴趣。Python 提供了一个度量工具,为这些问题提供了直接答案。

例如,使用元组封装和拆封来交换元素看起来要比使用传统的方法要诱人的多,timeit 证明了现代的方法更快一些。

>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

相对于 timeit 的细粒度,profilepstats 模块提供了针对更大代码块的时间度量工具。


3.11 测试模块

开发高质量软件的方法之一是为每一个函数开发测试代码,并且在开发过程中经常进行测试

doctest模块提供了一个工具,扫描模块并根据程序中内嵌的文档字符串执行测试。

测试构造如同简单的将它的输出结果剪切并粘贴到文档字符串中。

通过用户提供的例子,它强化了文档,允许 doctest 模块确认代码的结果是否与文档一致:

def average(values):
    """Computes the arithmetic mean of a list of numbers.

    >>> print(average([20, 30, 70]))
    40.0
    """
    return sum(values) / len(values)

import doctest
doctest.testmod()   # 自动验证嵌入测试

unittest模块不像 doctest模块那么容易使用,不过它可以在一个独立的文件里提供一个更全面的测试集:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

    def test_average(self):
        self.assertEqual(average([20, 30, 70]), 40.0)
        self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
        self.assertRaises(ZeroDivisionError, average, [])
        self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

4. 网络编程

Python 提供了两个级别访问的网络服务:

  • 低级别的网络服务支持基本的 Socket,它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口的全部方法。
  • 高级别的网络服务模块 SocketServer, 它提供了服务器中心类,可以简化网络服务器的开发。

4.1 socket

什么是 Socket?

Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求,使主机间或者一台计算机上的进程间可以通讯。


socket()函数

Python 中,用 socket()函数来创建套接字,语法格式如下:

socket.socket([family[, type[, proto]]])

参数

  • family: 套接字家族可以使AF_UNIX或者AF_INET
  • type: 套接字类型可以根据是面向连接的还是非连接分为SOCK_STREAM或SOCK_DGRAM
  • protocol: 一般不填默认为0

Socket 对象(内建)方法

函数 描述
---- 服务器端套接字
s.bind() 绑定地址(host,port)到套接字, 在AF_INET下,以元组(host,port)的形式表示地址。
s.listen() 开始TCP监听。backlog指定在拒绝连接之前,操作系统可以挂起的最大连接数量。该值至少为1,大部分应用程序设为5就可以了。
s.accept() 被动接受TCP客户端连接,(阻塞式)等待连接的到来
---- 客户端套接字
s.connect() 主动初始化TCP服务器连接,。一般address的格式为元组(hostname, port),如果连接出错,返回socket.error错误。
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常。
---- 公共用途的套接字函数
s.recv() 接收TCP数据,数据以字符串形式返回,bufsize指定要接收的最大数据量。flag提供有关消息的其他信息,通常可以忽略。
s.send() 发送TCP数据,将string中的数据发送到连接的套接字。返回值是要发送的字节数量,该数量可能小于string的字节大小。
s.sendall() 完整发送TCP数据,完整发送TCP数据。将string中的数据发送到连接的套接字,但在返回之前会尝试发送所有数据。成功返回None,失败则抛出异常。
s.recvform() 接收UDP数据,与recv()类似,但返回值是(data,address)。其中data是包含接收数据的字符串,address是发送数据的套接字地址。
s.sendto() 发送UDP数据,将数据发送到套接字,address是形式为(ipaddr,port)的元组,指定远程地址。返回值是发送的字节数。
s.close() 关闭套接字
s.getpeername() 返回连接套接字的远程地址。返回值通常是元组(ipaddr,port)。
s.getsockname() 返回套接字自己的地址。通常是一个元组(ipaddr,port)。
s.setsockopt(level,optname,value) 设置给定套接字选项的值。
s.getsockopt(level,optname[.buflen]) 返回套接字选项的值。
s.settimeout(timeout) 设置套接字操作的超时期,timeout是一个浮点数,单位是秒。值为None表示没有超时期。一般,超时期应该在刚创建套接字时设置,因为它们可能用于连接的操作(如connect())
s.gettimeout() 返回当前超时期的值,单位是秒,如果没有设置超时期,则返回None。
s.fileno() 返回套接字的文件描述符。
s.setblocking(flag) 如果flag为0,则将套接字设为非阻塞模式,否则将套接字设为阻塞模式(默认值)。非阻塞模式下,如果调用recv()没有发现任何数据,或send()调用无法立即发送数据,那么将引起socket.error异常。
s.makefile() 创建一个与该套接字相关连的文件。

简单实例:

服务端

  1. 使用 socket 模块的 socket 函数来创建一个 socket 对象。socket 对象可以通过调用其他函数来设置一个 socket 服务。

  2. 调用 bind(hostname, port) 函数指定服务的 port(端口)。

  3. 接着,调用 socket 对象的 accept 方法。该方法等待客户端的连接,并返回 connection 对象,表示已连接到客户端。

完整代码如下:

#!/usr/bin/python3
# 文件名:server.py

# 导入 socket、sys 模块
import socket
import sys

# 创建 socket 对象
serversocket = socket.socket(
            socket.AF_INET, socket.SOCK_STREAM) 

# 获取本地主机名
host = socket.gethostname()

port = 9999

# 绑定端口
serversocket.bind((host, port))

# 设置最大连接数,超过后排队
serversocket.listen(5)

while True:
    # 建立客户端连接
    clientsocket,addr = serversocket.accept()      

    print("连接地址: %s" % str(addr))
    
    msg='欢迎访问W3Cschool教程!'+ "\r\n"
    clientsocket.send(msg.encode('utf-8'))
    clientsocket.close()

客户端

  1. 写一个简单的客户端实例连接到以上创建的服务。端口号为 12345。

  2. socket.connect(hosname, port ) 方法打开一个 TCP 连接到主机为 hostname 端口为 port 的服务商。连接后就可以从服务端后期数据,操作完成后需要关闭连接。

完整代码如下:

#!/usr/bin/python3
# 文件名:client.py

# 导入 socket、sys 模块
import socket
import sys

# 创建 socket 对象
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

# 获取本地主机名
host = socket.gethostname() 

# 设置端口好
port = 9999

# 连接服务,指定主机和端口
s.connect((host, port))

# 接收小于 1024 字节的数据
msg = s.recv(1024)

s.close()

print (msg.decode('utf-8'))

打开连接终端,第一个终端执行 server.py 文件:

$ python3 server.py

第二个终端执行 client.py 文件:

$ python3 client.py 
欢迎访问W3Cschool教程!

再打开第一个终端,就会看到有以下信息输出:

连接地址: ('192.168.0.118', 33397)

4.2 Internet

以下列出了 Python 网络编程的一些重要模块:

协议 功能用处 端口号 Python 模块
HTTP 网页访问 80 httplib, urllib, xmlrpclib
NNTP 阅读和张贴新闻文章,俗称为"帖子" 119 nntplib
FTP 文件传输 20 ftplib, urllib
SMTP 发送邮件 25 smtplib
POP3 接收邮件 110 poplib
IMAP4 获取邮件 143 imaplib
Telnet 命令行 23 telnetlib
Gopher 信息查找 70 gopherlib, urllib

更多内容可以参阅官网的 Python Socket Library and Modules。

5. 正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。

Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。

re 模块使 Python 语言拥有全部的正则表达式功能。

compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象。该对象拥有一系列方法用于正则表达式匹配和替换。

re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数。

本章节主要介绍Python中常用的正则表达式处理函数。


5.1 re.match函数

re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。

函数语法:

re.match(pattern, string, flags=0)

函数参数说明:

参数 描述
pattern 匹配的正则表达式
string 要匹配的字符串。
flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

5.2 re.search方法

re.search 扫描整个字符串并返回第一个成功的匹配。

函数语法:

re.search(pattern, string, flags=0)

5.3 re.match与re.search的区别

re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。


5.4 检索和替换

Python 的re模块提供了re.sub用于替换字符串中的匹配项。

语法:

re.sub(pattern, repl, string, max=0)

5.5 正则表达式修饰符 - 可选标志

正则表达式可以包含一些可选标志修饰符来控制匹配的模式。修饰符被指定为一个可选的标志。多个标志可以通过按位 OR(|) 它们来指定。如 re.I | re.M 被设置成 I 和 M 标志:
返回的字符串是在字符串中用 RE 最左边不重复的匹配来替换。如果模式没有发现,字符将被没有改变地返回。

可选参数 count 是模式匹配后替换的最大次数;count 必须是非负整数。缺省值是 0 表示替换所有的匹配。

修饰符 描述
re.I 使匹配对大小写不敏感
re.L 做本地化识别(locale-aware)匹配
re.M 多行匹配,影响 ^ 和 $
re.S 使 . 匹配包括换行在内的所有字符
re.U 根据Unicode字符集解析字符。这个标志影响 \w, \W, \b, \B.
re.X 该标志通过给予你更灵活的格式以便你将正则表达式写得更易于理解。

5.6 正则表达式模式

模式字符串使用特殊的语法来表示一个正则表达式:

  • 字母和数字表示他们自身。一个正则表达式模式中的字母和数字匹配同样的字符串。
  • 多数字母和数字前加一个反斜杠时会拥有不同的含义。
  • 标点符号只有被转义时才匹配自身,否则它们表示特殊的含义。
  • 反斜杠本身需要使用反斜杠转义。

由于正则表达式通常都包含反斜杠,所以你最好使用原始字符串来表示它们。模式元素(如 r’/t’,等价于’//t’)匹配相应的特殊字符。

具体可参考:https://www.w3cschool.cn/python3/python3-reg-expressions.html


6. 日期和时间

Python 程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能。

Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间。

时间间隔是以秒为单位的浮点小数。

每个时间戳都以自从1970年1月1日午夜(历元)经过了多长时间来表示。

Python 的 time 模块下有很多函数可以转换常见日期格式。如函数time.time()用于获取当前时间戳, 如下实例:

#!/usr/bin/python3
import time;  # 引入time模块

ticks = time.time()
print ("当前时间戳为:", ticks)

以上实例输出结果:

当前时间戳为: 1459996086.7115328

时间戳单位最适于做日期运算。但是1970年之前的日期就无法以此表示了。太遥远的日期也不行,UNIX和Windows只支持到2038年。


6.1 时间元组

什么是时间元组?
很多Python函数用一个元组装起来的9组数字处理时间:

序号 字段
0 4位数年 2008
1 1 到 12
2 1到31
3 小时 0到23
4 分钟 0到59
5 0到61 (60或61 是闰秒)
6 一周的第几日 0到6 (0是周一)
7 一年的第几日 1到366 (儒略历)
8 夏令时 -1, 0, 1, -1是决定是否为夏令时的旗帜

上述也就是struct_time元组。这种结构具有如下属性:

序号 属性
0 tm_year 2008
1 tm_mon 1 到 12
2 tm_mday 1 到 31
3 tm_hour 0 到 23
4 tm_min 0 到 59
5 tm_sec 0 到 61 (60或61 是闰秒)
6 tm_wday 0到6 (0是周一)
7 tm_yday 一年中的第几天,1 到 366
8 tm_isdst 是否为夏令时,值有:1(夏令时)、0(不是夏令时)、-1(未知),默认 -1

6.1 获取当前时间

从返回浮点数的时间辍方式向时间元组转换,只要将浮点数传递给如localtime之类的函数。

#!/usr/bin/python3
import time

localtime = time.localtime(time.time())
print ("本地时间为 :", localtime)

以上实例输出结果:

本地时间为 : time.struct_time(tm_year=2016, tm_mon=4, tm_mday=7, tm_hour=10, tm_min=28, tm_sec=49, tm_wday=3, tm_yday=98, tm_isdst=0)

6.2 获取格式化的时间

你可以根据需求选取各种格式,但是最简单的获取可读的时间模式的函数是asctime():

#!/usr/bin/python3
import time

localtime = time.asctime( time.localtime(time.time()) )
print ("本地时间为 :", localtime)

以上实例输出结果:

本地时间为 : Thu Apr  7 10:29:13 2016

6.3 格式化日期

我们可以使用 time 模块的 strftime 方法来格式化日期:

time.strftime(format[, t])
import time

# 格式化成2016-03-20 11:45:39形式
print
    (time.strftime("%Y-%m-%d %H:%M:%S", time
        .localtime()))

# 格式化成Sat Mar 28 22:24:24 2016形式
print 
            (time.strftime("%a %b %d %H:%M:%S %Y", time.
                localtime()))  

# 将格式字符串转换为时间戳
a = "Sat Mar 28 22:24:24 2016"

                    print (time.mktime(time.
                        strptime(a,"%a %b %d %H:%M:%S %Y")))                            

以上实例输出结果:

2016-04-07 10:29:46
Thu Apr 07 10:29:46 
20161459175064.0

python中时间日期格式化符号:

  • %y 两位数的年份表示(00-99)
  • %Y 四位数的年份表示(000-9999)
  • %m 月份(01-12)
  • %d 月内中的一天(0-31)
  • %H 24小时制小时数(0-23)
  • %I 12小时制小时数(01-12)
  • %M 分钟数(00=59)
  • %S 秒(00-59)
  • %a 本地简化星期名称
  • %A 本地完整星期名称
  • %b 本地简化的月份名称
  • %B 本地完整的月份名称
  • %c 本地相应的日期表示和时间表示
  • %j 年内的一天(001-366)
  • %p 本地A.M.或P.M.的等价符
  • %U 一年中的星期数(00-53)星期天为星期的开始
  • %w 星期(0-6),星期天为星期的开始
  • %W 一年中的星期数(00-53)星期一为星期的开始
  • %x 本地相应的日期表示
  • %X 本地相应的时间表示
  • %Z 当前时区的名称
  • %% %号本身

6.4 获取某月日历

Calendar模块有很广泛的方法用来处理年历和月历,例如打印某月的月历:

#!/usr/bin/python3

import calendar
cal = calendar.month(2016, 1)
print ("以下输出2016年1月份的日历:")
print (cal)

以上实例输出结果:

以下输出20161月份的日历:    
    January 2016
Mo Tu We Th Fr Sa Su             
            1  2  3 
4  5  6  7  8  9  10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

6.5 time模块

可以参考:https://www.w3cschool.cn/python3/python3-date-time.html


6.6 calendar模块

可以参考:https://www.w3cschool.cn/python3/python3-date-time.html


6.7 datetime 模块

可以参考:https://docs.python.org/3/library/datetime.html


7. Python 内置函数

可以参考:https://www.w3cschool.cn/python3/python3-built-in-functions.html


8. SMTP 发送邮件

可以参考:https://www.w3cschool.cn/python3/python3-smtp.html


9. 小游戏

可以参考:https://www.w3cschool.cn/python3/python3-ngwk2zg8.html


10. 爬虫实战

可以参考:https://www.w3cschool.cn/python3/python3-u6ij2pw3.html


11. CGI 编程

可以参考:https://www.w3cschool.cn/python3/python3-cgi-programming.html


12. XML解析

可以参考:https://www.w3cschool.cn/python3/python3-xml-processing.html


13. JSON解析

可以参考:https://www.w3cschool.cn/python3/python3-json.html


14. Python MySQL

可以参考:
https://www.w3schools.com/python/python_mysql_getstarted.asp
https://www.w3cschool.cn/python3/python3-mysql.html


15. Python MongoDB

可以参考:https://www.w3schools.com/python/python_mongodb_getstarted.asp


16. 机器学习

可以参考:
https://www.w3cschool.cn/python3/python3-eam72ylh.html
https://www.w3schools.com/python/python_ml_getting_started.asp


参考:
https://www.w3cschool.cn/python3/
https://www.w3schools.com/python/default.asp

你可能感兴趣的:(Python)