- 计算机设计大赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python
iuerfee
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习行人重识别(personreid)系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https:
- 行人重识别
NineDays66
人工智能
在人的感知系统所获得的信息中,视觉信息大约占到80%~85%。行人重识别(personre-identification)是近几年智能视频分析领域兴起的一项新技术,属于在复杂视频环境下的图像处理和分析范畴,是许多监控和安防应用中的主要任务,并且在计算机视觉领域获得了越来越多的关注。下面我们就仔细来聊聊行人重识别(ReID)。1.什么是行人重识别行人重识别(PersonRe-identificat
- 跨模态行人重识别:Cross-Modality Person Re-Identification with Generative Adversarial Training 学习记录笔记
深度学不会习
深度学习
目录摘要方法cmGANGeneratorDiscriminatorTrainingAlgorithmExperiments论文链接:https://www.ijcai.org/Proceedings/2018/0094.pdf摘要(1)提出一种新的跨模态生成对抗网络(称为cmGAN)。为了解决鉴别信息不足的问题,设计了一种基于生成对抗训练的鉴别器,从不同的模式中学习鉴别特征表示。(2)为了解决大规
- 跨模态行人重识别:Discover Cross-Modality Nuances for Visible-Infrared Person Re-Identification学习记录笔记
深度学不会习
学习
目录摘要网络结构具体方法MAMPAM模态分类损失共享特征ID损失中心簇损失总损失试验注意模式可视化分布结果原文链接:DiscoverCross-ModalityNuancesforVisible-InfraredPersonRe-Identification摘要提出了一种联合模态和模式对齐网络(MPANet)来发现可见红外人Re-ID不同模式中的跨模态细微差别,它引入了模态缓解模块和模式对齐模块来共
- 跨模态行人重识别:Dynamic Dual-Attentive Aggregation Learningfor Visible-Infrared Person Re-Identification学习笔记
深度学不会习
学习
目录摘要方法模态内加权聚合(IWPA)跨模态图结构化注意力(CGSA)GraphConstructionGraphAttention动态对偶聚合学习试验论文链接:DynamicDual-AttentiveAggregationLearningforVisible-InfraredPersonRe-Identification摘要通过挖掘VI-ReID的模态内部分级和跨模态图级上下文线索,提出了一种新
- 跨模态行人重识别:Modality Synergy Complement Learning withCascaded Aggregation for Visible-InfraredPerson 笔记
深度学不会习
深度学习python
目录简述贡献MSCLNet方法模态协同模块模态补充模块级联聚合策略子类级聚合类内聚合类间级上的聚合目标函数基于级联聚合的模态协同互补学习在可见光-红外人员识别中的应用简述级联聚合的模态协同互补学习网络(MSCLNET)。基本思想是协同两个模态来构造不同的身份鉴别语义和较少噪声的表示。然后,在这两种模式的优点下对协同表征进行了补充。此外,提出了级联聚合策略,用于细粒度的特征分布优化,该策略将子类、类
- 行人重识别(二)跨模态的行人重识别
石头儿啊
行人重识别计算机视觉人工智能
感谢前辈总结的论文列表,为了方便自己以后翻阅,链接搁这儿1.背景在我们现实生活中,可见光条件下的摄像机拍到的图像,往往会包含行人的大部分外观信息,然而现实中并不只需要在可视条件极佳的条件下进行监控,在夜晚或者可视条件极差的场景中也有监控的需要,这个时候,红外相机拍摄的图像便可用于行人的再识别。据我所知,现阶段大部分ReID工作都聚焦在RGB图像这种单一模态上,而基于RGB-IR的跨模态ReID工作
- 使用中间X模态的跨模态行人重识别
小小猿D
笔记
引入X模态作为辅助,将红外线--可见光跨模态学习转化为X-IR-V三模态学习,提出了一个X-红外-可见光(XIV)ReID跨模态学习框架。首先X模态由轻量型网络生成,其次,在xiv框架下,跨模态学习由一个精心设计的模态间隙约束引导,信息交换跨越可见、x和红外模态。基于红外图像的图像主要包括结构和形状信息X模态是一种伴随辅助模态,用于协调红外和可见光。一个轻量级X模态生成器和一个权重共享XIV跨模态
- 【跨模态行人重识别】RGB-Infrared Cross-Modality Person Re-Identification(ICCV2017)
渺渺404
跨模态行人重识别计算机视觉人工智能深度学习
文章目录摘要1介绍2SYSU-MM01数据集2.1数据集描述2.2评估标准3跨模态模型的网络结构比较3.1常见的深度模型网络结构3.2网络结构分析单流结构和双流结构在特殊情况下的联系(双流网络可以用单流网络表示)一般情况下的单流结构分析4深度零填充4.1零填充作为网络输入的分析(梯度分析)4.2RGB-IR应用深度零填充4.3跨模态学习的比较5实验5.1比较的模型5.2模型比较与分析6总结摘要行人
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- 跨模态行人重识别都需要学什么
ALGORITHM LOL
人工智能
跨模态行人重识别(Cross-ModalityPersonRe-identification,简称Cross-ModalityRe-ID)是计算机视觉领域的一项挑战性任务,旨在跨越不同模态之间(例如,可见光与红外线图像)识别同一行人。该任务涉及图像处理、特征提取、模态转换、深度学习等多个方面。1.基础知识计算机视觉与图像处理:理解图像基础(如像素、色彩空间)、图像变换、图像增强技术。机器学习基础:
- 基于深度学习的行人重识别(person reid) 计算机竞赛
Mr.D学长
pythonjava
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- 互联网加竞赛 基于深度学习的行人重识别(person reid)
Mr.D学长
pythonjava
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- 姿态估计概述
Diros1g
姿态估计
定义和优势单目摄像机拍摄的二维图像中预测行人的人体关键点坐标,为其他任务做支持如行人重识别、动作识别。目前分类两类:单人和多人基于计算机视觉的人体姿态佶计不需要额外的穿戴设备,该技术比传统的穿戴式动作捕捉技术成本更加低廉且灵活性更高人体姿态表示形式1.二位坐标关键点(人体主要关节)表达方式以二位坐标的形式(x,y),方法简洁,无序后处理2.空间热力图回归的数据是关键点落在该坐标的概率,优点定位更精
- 论文阅读:Learning to Compose Dynamic Tree Structure for Visual Context(CVPR2019)
糖豆豆今天也要努力鸭
机器学习场景图scenegraph场景理解计算机视觉cv
因为我的方向是场景图,所以仅介绍这篇论文中有关场景图的内容,不涉及VQA。(a)FeatureExtraction先对输入图像进行目标检测,每个proposal的视觉特征x包括以下特征:ROIAlignfeature(2048维),空间feature(8维),论文这里说视觉特征不局限于bbox,实例分割特征和全景特征也可以。(b)构建可学习的对称矩阵S(1)S的计算方法如下:f(xi,xj)称为对
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- 大创项目推荐 行人重识别(person reid) - 机器视觉 深度学习 opencv python
laafeer
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习行人重识别(personreid)系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https:
- 竞赛保研 基于深度学习的行人重识别(person reid)
iuerfee
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- CVPR19-Few-shot
vieo
CVPR19-Few-shot本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。基于度量的方法(在原型网络,图卷积的基础上改进)RevisitingLocalDescriptorbasedImage-to-Class
- 大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid
laafeer
python
文章目录0前言1课题背景2效果展示3行人检测4行人重识别5其他工具6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的行人重识别算法研究与实现**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate
- DA(语义分割3)Bidirectional Learning for Domain Adaptation of Semantic Segmentation
西瓜_f1c9
BidirectionalLearningforDomainAdaptationofSemanticSegmentation来源:CVPR2019作者:YunshengLi,LuYuan,NunoVasconcelos机构:加州大学圣地亚哥分校(UCSanDiego),微软数据集:GTA5和SYNTHIA是原域,Cityscapes是目标域。网络:translationmodel(F)isCycl
- 一些想法:关于行人检测与重识别
baidu_huihui
人工智能计算机视觉
本文主要是介绍我们录用于ECCV'18的一个工作:PersonSearchviaAMask-guidedTwo-streamCNNModel.这篇文章着眼于PersonSearch这个任务,即同时考虑行人检测(PedestrianDetection)与行人重识别(PersonRe-identification),简单探讨了一下行人检测与行人重识别这两个子任务之间的关联性,并尝试利用全景图像中的背景
- 论文阅读: AAAI 2022行人重识别方向论文-PFD_Net
菜鸟的追梦旅行
ReIDReID行人重识别深度学习
本篇博客用于记录一篇行人重识别方向的论文所提出的优化方法《Pose-GuidedFeatureDisentanglingforOccludedPersonRe-identificationBasedonTransformer》,论文中提出的PDF_Net模型的backbone是采用《TransReID:Transformer-basedObjectRe-Identification》的主干网络Tr
- 论文笔记Multi-Person Pose Estimation with Enhanced Channel-wise and Spatial Information CVPR2019
Maniache
这周看了一篇新的来自CVPR2019的姿态估计paper,不过对计算机视觉任务来说都应该能带来一些启发,笔者按照自己的理解做一个笔记,欢迎讨论拍砖,感谢!论文题目如下:一、MotivationandContribution首先,在姿态估计领域,一般面临的挑战主要有光照、尺度差异、遮挡等等。一般来说,高层的低分辨率的语义特征可以用来推导看不见的关节,而低层的高分辨率的语义特征对适应尺度变化推导小尺度
- 【2024 行人重识别最新进展】ReID3D:首个关注激光雷达行人 ReID 的工作!
BIT可达鸭
3d人工智能3维重建计算机视觉行人重识别
【2024行人重识别最新进展】ReID3D:首个关注激光雷达行人ReID的工作!摘要:数据集:方法模型:多任务预训练:ReIDNetwork:实验结果:结论:来源:Arxiv2023机构:清华大学&北京理工大学论文题目:LiDAR-basedPersonRe-identification本文是首个基于激光雷达的人ReID的工作,展示了在具有挑战现实世界的户外场景中,利用激光雷达进行的行人ReID的
- 行人Reid半自动化标注
贝猫说python
1、检测跟踪的方法得到一个视频的行人idid会有重叠的行人,一个人的多张图片变成多个id,针对这个问题,采用人脸的聚类方法,重新生成聚类后的id参考:半自动的行人重识别数据标注算法Tracking+infomap
- DA(语义分割2)ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation
西瓜_f1c9
ADVENT:AdversarialEntropyMinimizationforDomainAdaptationinSemanticSegmentation来源:CVPR2019作者:Tuan-HungVu,HimalayaJain,MaximeBucher,MatthieuCord,PatrickP´erez机构:索邦大学(位于法国巴黎),valeo.ai(位于法国巴黎)代码:作者在github
- 《MS-TCN++》算法详解
ce0b74704937
论文地址:《MS-TCN++:Multi-StageTemporalConvolutionalNetworkforActionSegmentation》代码地址:https://github.com/sj-li/MS-TCN2从名字可以看出在该文章之前还有一篇《MS-TCN》发表于CVPR2019,MS-TCN在本文的前部分会被介绍。本文《MS-TCN++》则是发表于TPAMI2020。一、MS-
- 浅析行人重识别
Shirleybebe
行人重识别在此先给出官方解释: 行人重识别(Personre-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。给定一个监控行人图像:给定一个希
- 论文笔记 | 使用深度光照场估计对欠曝光照片进行增强
理想就是派大星
计算机视觉深度学习
UnderexposedPhotoEnhancementusingDeepIlluminationEstimation|CVPR2019工作提出了一个通过估计出一个图像到光照的映射来对欠曝光图像进行增强,并在各种光照约束和先验的基础上设计新的损失函数准备了一个新的数据集,含有3000张欠曝光的图像,每张图像都经过专业修复对所提出的模型在现有的数据和新数据集上进行测试,显示出该方法在质量和处理数量上
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象