我们请求网络的时候需要OkHttpClient.newCall(request)进行execute或者enqueue操作;当调用newCall方法时,会调用如下代码:
@Override public Call newCall(Request request) {
return new RealCall(this, request, false /* for web socket */);
}
实际上,返回的是newCall类,然后追踪newCall的enqueue方法。
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
可以看见,最终调用了dispacher()的enqueue方法,对dispacher进行追踪。
Dispacher主要用于控制并发的请求,主要维护了最大并发请求,最大请求数,消费者线程,将要运行的异步请求队列,正在运行的异步请求队列,正在运行的同步请求队列等。
先看Dispacher的构造方法:
public Dispatcher(ExecutorService executorService) {
this.executorService = executorService;
}
public Dispatcher() {
}
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
构造方法主要用于传递线程池,我们可以自己实现线程池,也可以使用默认的线程池,默认线程池适合处理大量的耗时较短的任务。
然后来看enqueue方法:
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
如果请求的数量小于maxRequests,请求的主机数小于maxRequestsPerHost时,就会把它添加到runningAsyncCalls中,并在线程池中执行。否则就加入readyAsyncCalls中进行缓存等待。注意传入的call是AsyncCall,是RealCall的内部类,内部实现了execute方法,其中片段如下:
finally {
client.dispatcher().finished(this);
}
execute方法一定会调用finished方法,追踪finished方法:
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
最终调用了promoteCalls,追踪promoteCalls:
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
根据注解可以看出核心逻辑就是当缓存中存在call要处理,并且线程池没有满的话,把缓存的call拿出来交给线程池执行。
然后再看AsyncCall,其中片段如下:
Response response = getResponseWithInterceptorChain();
看方法名得知请求网络并通过拦截器链得到一个response。
追踪getRequestWithInterceptorChain方法:
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);
创建了一个RealInterceptorChain拦截器链,执行了proceed方法。其中代码片段如下:
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
拦截器会拦截请求,实现监控,重写,重试调用的机制,通常用来添加,移出,修改头部信息。
cacheCandidate是一个可以读取缓存Header的Response,根据cacheStrategy的处理得到了networkRequest和cacheResponse两个值,两者都为空那么,返回504错误,当networkRequest为null时,也就是不进行网络请求,如果缓存可以直接使用直接返回缓存,如果其他情况那么请求网络。
在readResponse方法中,主要用来解析HTTP相应报头,如果有缓存可用,那么用缓存的数据并更新缓存,否则就用网络请求返回的数据。再看validate方法是如何判断缓存是否可用的。在validate中如果服务器返回304,那么缓存有效,然后根据响应中的last-modified来计算是否是最新数据,如果是,那么缓存有效。
当发生IOException和RouteException时,都会执行HttpEngine的recover方法。片段如下:
return new HttpEngine(client, userRequest, bufferRequestBody, callerWritesRequestBody,
forWebSocket, streamAllocation, (RetryableSink) requestBodyOut, priorResponse);
实际上就是重新创建了HttpEngine并返回。
为了解决TCP握手和挥手的效率问题,HTTP有一种叫keepalive connections的机制,连接池的主要变量如下:
private static final Executor executor = new ThreadPoolExecutor(0 /* corePoolSize */,
Integer.MAX_VALUE /* maximumPoolSize */, 60L /* keepAliveTime */, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp ConnectionPool", true));
/** The maximum number of idle connections for each address. */
private final int maxIdleConnections;
private final long keepAliveDurationNs;
private final Deque<RealConnection> connections = new ArrayDeque<>();
final RouteDatabase routeDatabase = new RouteDatabase();
首先有一个线程池,类似于CachedThreadPool,使用了没有容量的SynchronousQueue.Dequeue是一个双向队列,同时具有队列和栈的性质,里面维护了socket的包装RealConnection。RouteDatabase,用来记录连接失败的路线的名单,连接失败时会把失败路线加进去。
然后看Connection的构造方法,默认空闲的最大连接数为5个,socket的keepAlive时间为5分钟。ConnectionPool是在OkHttpClient实例化的时候创建的。
Connection提供对Dequeue的操作的方法分别为put,get,connectionBecameIdle和evictAll这几个操作,分别对应放入连接,获取连接,移出连接和移出所有连接。
void put(RealConnection connection) {
assert (Thread.holdsLock(this));
if (!cleanupRunning) {
cleanupRunning = true;
executor.execute(cleanupRunnable);
}
connections.add(connection);
}
在添加到Dequeue之前需要清理空闲的线程。然后看get操作:
RealConnection get(Address address, StreamAllocation streamAllocation) {
assert (Thread.holdsLock(this));
for (RealConnection connection : connections) {
if (connection.allocations.size() < connection.allocationLimit
&& address.equals(connection.route().address)
&& !connection.noNewStreams) {
streamAllocation.acquire(connection);
return connection;
}
}
遍历缓存中的所有连接,当连接计数的次数小于限制的大小,并且request地址和缓存列表中连接的地址相同时,直接复用列表中的connection作为request的连接。
OkHttp是根据StreamAllocation引用计数是否为0来实现自动回收连接的,我们在put操作时首先调用executor.execute(cleanRunnable)来清理闲置的线程。
private final Runnable cleanupRunnable = new Runnable() {
@Override public void run() {
while (true) {
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (ConnectionPool.this) {
try {
ConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
}
}
}
}
}
};
调用了cleanup方法来清理,然后返回一个等待时间,在等待时间到之后再次进行清理,不断循环。然后跟踪cleanup方法。
long cleanup(long now) {
int inUseConnectionCount = 0;
int idleConnectionCount = 0;
RealConnection longestIdleConnection = null;
long longestIdleDurationNs = Long.MIN_VALUE;
// Find either a connection to evict, or the time that the next eviction is due.
synchronized (this) {
for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
RealConnection connection = i.next();
// If the connection is in use, keep searching.
if (pruneAndGetAllocationCount(connection, now) > 0) {
inUseConnectionCount++;
continue;
}
idleConnectionCount++;
// If the connection is ready to be evicted, we're done.
long idleDurationNs = now - connection.idleAtNanos;
if (idleDurationNs > longestIdleDurationNs) {
longestIdleDurationNs = idleDurationNs;
longestIdleConnection = connection;
}
if (longestIdleDurationNs >= this.keepAliveDurationNs
|| idleConnectionCount > this.maxIdleConnections) {
// We've found a connection to evict. Remove it from the list, then close it below (outside
// of the synchronized block).
connections.remove(longestIdleConnection);
} else if (idleConnectionCount > 0) {
// A connection will be ready to evict soon.
return keepAliveDurationNs - longestIdleDurationNs;
} else if (inUseConnectionCount > 0) {
// All connections are in use. It'll be at least the keep alive duration 'til we run again.
return keepAliveDurationNs;
} else {
// No connections, idle or in use.
cleanupRunning = false;
return -1;
}
}
首先根据pruneAndGetAllocationCount方法判断连接是否空闲,如果在使用中,那么继续去找,否则,那么空闲的连接数加1。先找到空闲线程中时间最长的线程并记录,如果最长的空闲时间大于5分钟,或者空闲的线程数大于5个,那么移出这个线程。如果空闲线程数大于0,那么返回这个线程的剩余时间,如果都是活跃线程,那么返回默认的时间5分钟,如果没有任何连接,那么返回-1。
那么pruneAndGetAllocationCount如何判断线程是否空闲,如下:
private int pruneAndGetAllocationCount(RealConnection connection, long now) {
List<Reference<StreamAllocation>> references = connection.allocations;
for (int i = 0; i < references.size(); ) {
Reference<StreamAllocation> reference = references.get(i);
if (reference.get() != null) {
i++;
continue;
}
// We've discovered a leaked allocation. This is an application bug.
Internal.logger.warning("A connection to " + connection.route().address().url()
+ " was leaked. Did you forget to close a response body?");
references.remove(i);
connection.noNewStreams = true;
// If this was the last allocation, the connection is eligible for immediate eviction.
if (references.isEmpty()) {
connection.idleAtNanos = now - keepAliveDurationNs;
return 0;
}
}
首先遍历StreamAllocation列表,如果StreamAllocation不为空,那么遍历下一个。如果为空,那么从列表中移除,直到列表为空,那么说明连接没有被引用,那么返回0。
OkHttp的高层代码调用中,使用类似引用计数的方法来跟踪socket流的调用,计数对象是StreamAllocation,反复执行acquire和release操作,改变StreamAllocation列表的大小,StreamAllocation数量就是socket被引用的数目。